State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
Space Environment Simulation Research Infrastructure, Harbin Institute of Technology, Harbin, 150006, China.
Nat Commun. 2023 Jan 18;14(1):291. doi: 10.1038/s41467-022-35736-x.
The slow redox kinetics of polysulfides and the difficulties in decomposition of LiS during the charge and discharge processes are two serious obstacles to the practical application of lithium-sulfur batteries. Herein, we construct the Fe-Co diatomic catalytic materials supported by hollow carbon spheres to achieve high-efficiency catalysis for the conversion of polysulfides and the decomposition of LiS simultaneously. The Fe atom center is beneficial to accelerate the discharge reaction process, and the Co atom center is favorable for charging process. Theoretical calculations combined with experiments reveal that this excellent bifunctional catalytic activity originates from the diatomic synergy between Fe and Co atom. As a result, the assembled cells exhibit the high rate performance (the discharge specific capacity achieves 688 mAh g at 5 C) and the excellent cycle stability (the capacity decay rate is 0.018% for 1000 cycles at 1 C).
多硫化物的缓慢氧化还原动力学以及在充放电过程中 LiS 的分解困难是阻碍锂硫电池实际应用的两个严重障碍。在此,我们构建了由空心碳球支撑的 Fe-Co 双原子催化材料,以实现对多硫化物的高效转化和 LiS 的同时分解的高效催化。Fe 原子中心有利于加速放电反应过程,而 Co 原子中心有利于充电过程。理论计算结合实验揭示了这种优异的双功能催化活性源自 Fe 和 Co 原子之间的双原子协同作用。结果,组装后的电池表现出高倍率性能(在 5C 时放电比容量达到 688mAh g)和优异的循环稳定性(在 1C 时 1000 次循环的容量衰减率为 0.018%)。