Tomlinson Max, El-Sayed Moustafa Julia S, Zhang Xinyuan, Raza Yasrab, Wang Dongmeng, Hodgkinson Alan, Small Kerrin S
Department of Medical & Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK.
Department of Twin Research & Genetic Epidemiology, King's College London, London, UK.
Sci Rep. 2025 Aug 29;15(1):31861. doi: 10.1038/s41598-025-13693-x.
Cardiovascular disease progression is characterised by the dysregulation of lipid metabolism and pro-atherogenic effects of adipose tissue signalling. Recent findings from the analysis of transcriptomic data in bulk tissue has enabled these insights and revealed important changes in gene expression. However, few studies have explored these molecular mechanisms before the onset of cardiovascular disease. We explore associations between future lipid-regulating drug use and cardiometabolic traits (n = 103), including DXA scans of body composition at baseline and follow-up 5-10 years later, in a cohort of British twins (n up to 6963). Utilising transcriptomic profiles from a subset of twins (n = 766), we explore the associations between baseline adipose tissue gene expression, clinical traits, and future lipid-regulating drug usage. We then test the joint predictive capacity of clinical traits plus gene expression compared to traditional risk scores using an automated machine learning approach. We find 44 traits are associated with lipid-regulating drug usage including measurements of abdominal fat tissue, cardiovascular health, and lipid metabolism (FDR 5%). Then, we present that adipose tissue gene expression levels at baseline are associated cross-sectionally with 19 of these 44 traits (FDR 5%). By comparing adipose gene expression levels between individuals prescribed lipid-regulating drugs in the future and controls, we discover that genes associated with 16 of these 19 traits produced greater log-fold changes, suggesting shared mechanisms. We reveal 15 differentially expressed genes comparing future lipid-regulating drug users and controls at baseline (FDR 10%), including some implicated in angiogenesis: ESM1, RCAN2, and SOCS3. Functional enrichment with 1212 significantly differentially expressed genes (p < 0.05) included molecular mechanisms related to abnormal cardiovascular system electrophysiology (p = 1.89 × 10), arrhythmia (p = 4.02 × 10), and mitochondrial pathways (p = 1.12 × 10). Finally, we confirm inclusion of gene expression levels as features in machine learning models achieves a better AUC (0.919) compared to traditional risk predictors. These findings highlight the potential of bulk transcriptomic data to improve risk stratification for lipid-regulating drug use, offering new insights into the RNA biology of adipose tissue and advancing approaches for cardiovascular disease prevention.
心血管疾病的进展以脂质代谢失调和脂肪组织信号传导的促动脉粥样硬化作用为特征。近期对大块组织转录组数据的分析结果带来了这些见解,并揭示了基因表达的重要变化。然而,很少有研究在心血管疾病发病前探索这些分子机制。我们在一个英国双胞胎队列(人数最多6963人)中,探究未来使用脂质调节药物与心脏代谢特征(n = 103)之间的关联,这些特征包括基线时以及5至10年后随访时的双能X线吸收法(DXA)身体成分扫描。利用一部分双胞胎(n = 766)的转录组图谱,我们探究基线时脂肪组织基因表达、临床特征与未来脂质调节药物使用之间的关联。然后,我们使用自动化机器学习方法,测试临床特征加基因表达相对于传统风险评分的联合预测能力。我们发现44种特征与脂质调节药物使用有关,包括腹部脂肪组织测量、心血管健康和脂质代谢(错误发现率5%)。然后,我们指出基线时脂肪组织基因表达水平与这44种特征中的19种存在横断面关联(错误发现率5%)。通过比较未来服用脂质调节药物的个体与对照组之间的脂肪基因表达水平,我们发现与这19种特征中的16种相关的基因产生了更大的对数倍变化,表明存在共同机制。我们在基线时比较未来脂质调节药物使用者和对照组,发现15个差异表达基因(错误发现率10%),包括一些与血管生成有关的基因:内皮细胞特异性分子-1(ESM1)、钙调节神经磷酸酶2(RCAN2)和细胞因子信号转导抑制因子3(SOCS3)。对1212个显著差异表达基因(p < 0.05)进行功能富集分析,包括与心血管系统异常电生理(p = 1.89 × 10)、心律失常(p = 4.02 × 10)和线粒体途径(p = 1.12 × 10)相关的分子机制。最后,我们证实将基因表达水平作为机器学习模型的特征,与传统风险预测指标相比,可实现更好的曲线下面积(AUC,0.919)。这些发现突出了大块转录组数据在改善脂质调节药物使用风险分层方面的潜力,为脂肪组织的RNA生物学提供了新见解,并推进了心血管疾病预防方法。
Psychopharmacol Bull. 2024-7-8
JBJS Essent Surg Tech. 2025-8-15
Cochrane Database Syst Rev. 2017-1-17
Cochrane Database Syst Rev. 2021-4-19
NPJ Metab Health Dis. 2024
Cell Commun Signal. 2022-4-11
Cell Death Dis. 2022-4-4
FEBS Open Bio. 2021-12