Behzad Somayeh
Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran.
Sci Rep. 2025 Aug 29;15(1):31835. doi: 10.1038/s41598-025-15844-6.
This theoretical study provides a comprehensive analysis of the tunable influence of combined electric bias and magnetic fields on the thermoelectric properties of Tetragonal Silicene nanoribbons (T-SiNRs). The analysis focuses on both symmetric and asymmetric lattice configurations of T-SiNRs. The findings reveal that the application of a bias voltage induces an energy gap, transforming metallic T-SiNRs into semiconductors. In contrast, a magnetic field produces distinct effects: the Zeeman effect preserves the metallic nature by enhancing the density of states near the Fermi level, while the Peierls phase can induce a small band gap under specific field strengths. The thermodynamic properties, including thermal conductivity κ(T), heat capacity C(T) and Lorenz number L(T) exhibit distinct responses to these external perturbations: bias voltage significantly reduces these properties, particularly at higher temperatures, whereas a magnetic field enhances them. The emergence of a zero-intensity region in temperature-dependent functions, attributed to the suppression of charge carrier excitation, expands with increasing bias voltage but diminishes under a magnetic field. Moreover, the simultaneous application of bias voltage and a magnetic field enhances thermodynamic properties across various temperature ranges, compared to the unperturbed cases. Symmetric T-SiNRs exhibit higher thermal conductivity and heat capacity at low temperatures, while asymmetric structures dominate at higher temperatures. The behavior of the Lorenz number is particularly sensitive to external fields, with its peak position and intensity increasing under bias voltage but decreasing with the magnetic field. These findings highlight the potential of T-SiNRs for advanced nanoelectronic and thermophotonic applications, where precise modulation of thermal and electronic properties is critical for optimizing device performance.
这项理论研究全面分析了组合电场和磁场对四方硅烯纳米带(T-SiNRs)热电性能的可调影响。该分析聚焦于T-SiNRs的对称和非对称晶格构型。研究结果表明,施加偏置电压会诱导出能隙,将金属性的T-SiNRs转变为半导体。相比之下,磁场会产生不同的效应:塞曼效应通过增强费米能级附近的态密度来保持金属性质,而在特定场强下,佩尔斯相可诱导出一个小带隙。包括热导率κ(T)、热容C(T)和洛伦兹数L(T)在内的热力学性质对这些外部扰动呈现出不同的响应:偏置电压会显著降低这些性质,尤其是在较高温度下,而磁场则会增强它们。温度相关函数中出现的零强度区域,归因于电荷载流子激发的抑制,随着偏置电压的增加而扩大,但在磁场作用下会减小。此外,与未受扰动的情况相比,同时施加偏置电压和磁场会在各个温度范围内增强热力学性质。对称的T-SiNRs在低温下表现出较高的热导率和热容,而非对称结构在较高温度下占主导。洛伦兹数的行为对外部场特别敏感,其峰值位置和强度在偏置电压下增加,但在磁场作用下减小。这些发现突出了T-SiNRs在先进纳米电子和热光子应用中的潜力,在这些应用中,精确调制热学和电学性质对于优化器件性能至关重要。