Komal Lubaba, Kamran Atif, Jahan Summera, Akram Waheed, Siddiqui Manzer H, Alamri Saud, Shakir Muhammad
Institute of Botany, Quaid-e-Azam Campus, University of the Punjab, Lahore, 54000, Pakistan.
Department of Plant Pathology, Quaid-e-Azam Campus, University of the Punjab, Lahore, 54000, Pakistan.
BMC Plant Biol. 2025 Aug 29;25(1):1158. doi: 10.1186/s12870-025-06938-4.
Wheat (Triticum aestivum) is a staple food crop providing essential nutrition to global population. However, water scarcity and increasing drought stress, because of climate change, threaten its productivity. Oxidative stress increases the production of reactive oxygen species (ROS) due to drought which damages the plant cellular metabolism. Plants counteract this by regulating the transcription of enzymes like catalases, peroxidases, and superoxide dismutase. This research investigated activated biochar's (AB) role on wheat cultivars under deficit irrigation. Activated biochar significantly reduced lipid peroxidation (27-56%) while increasing antioxidant activities (40-60%) under low irrigation as compared to the control (no biochar), suggesting its potential to improve drought resilience. Peroxidase, for presenting significantly higher antioxidant activity, was selected as a key enzyme for molecular docking. Protein-protein interactions between the DREB1 transcription factor and peroxidase, supported by hydrogen bonding, electrostatic interactions, and hydrophobic forces, highlighted the role of biochar mediated peroxidase in oxidative stress response. This interaction highlighted the role of DREB1 in drought resilience, presenting a range of protein sizes, isoelectric points, and stability indices across TaDREB proteins in the wheat genome. Subcellular localization analysis demonstrated that most TaDREB genes, particularly DREB1, are active in the nucleus. At the same time, some are localized to chloroplasts and mitochondria, suggesting diverse roles in stress response and energy metabolism. Phylogenetic analysis grouped DREB genes from wheat (TaDREB), maize (ZmDREB), and Arabidopsis (AtDREB), indicating conserved evolutionary functions across monocot and dicot species. Motif and domain prediction revealed conserved AP2 domains across TaDREB genes, emphasizing their structural and functional conservation, which likely evolved through gene expansion to enhance stress tolerance. These findings are crucial for understanding biochemical attributes of drought responsive transcription factors and their interactive response with antioxidants, which can further help in gene editing technology.
小麦(Triticum aestivum)是一种主食作物,为全球人口提供必需的营养。然而,由于气候变化导致的水资源短缺和干旱胁迫加剧,威胁着其生产力。干旱会使氧化应激增加活性氧(ROS)的产生,从而损害植物细胞代谢。植物通过调节过氧化氢酶、过氧化物酶和超氧化物歧化酶等酶的转录来应对这种情况。本研究调查了活性生物炭(AB)在亏缺灌溉条件下对小麦品种的作用。与对照(无生物炭)相比,活性生物炭在低灌溉条件下显著降低了脂质过氧化(27 - 56%),同时提高了抗氧化活性(40 - 60%),表明其具有提高抗旱能力的潜力。由于过氧化物酶具有显著更高的抗氧化活性,因此被选为分子对接的关键酶。DREB1转录因子与过氧化物酶之间的蛋白质 - 蛋白质相互作用,在氢键、静电相互作用和疏水作用的支持下,突出了生物炭介导的过氧化物酶在氧化应激反应中的作用。这种相互作用突出了DREB1在抗旱中的作用,展示了小麦基因组中TaDREB蛋白的一系列蛋白质大小、等电点和稳定性指数。亚细胞定位分析表明,大多数TaDREB基因,特别是DREB1,在细胞核中具有活性。同时,一些基因定位于叶绿体和线粒体,表明它们在应激反应和能量代谢中具有多种作用。系统发育分析将来自小麦(TaDREB)、玉米(ZmDREB)和拟南芥(AtDREB)的DREB基因进行了分组,表明单子叶和双子叶物种具有保守的进化功能。基序和结构域预测揭示了TaDREB基因中保守的AP2结构域,强调了它们的结构和功能保守性,这可能是通过基因扩增进化而来以增强胁迫耐受性。这些发现对于理解干旱响应转录因子的生化特性及其与抗氧化剂的相互作用反应至关重要,这有助于进一步推动基因编辑技术的发展。
Plants (Basel). 2024-10-23
Biomed Pharmacother. 2023-6
Plant Physiol. 2022-8-29