Schmidt Michael Benno, Hahnel Sebastian, Rauch Angelika, Rosentritt Martin
Department of Prosthetic Dentistry, UKR University Hospital Regensburg, 93042, Regensburg, Germany.
Clin Oral Investig. 2025 Aug 30;29(9):426. doi: 10.1007/s00784-025-06518-8.
To investigate how surface treatment affects fracture force, flexural strength, and dynamic loading cycles until failure of 3D-printed restorations.
Specimens (7 groups; n = 8 per group) were 3D-printed from an acrylate-based crown and bridge material. After cleaning and post-polymerization, specimens were treated with either silicon carbide paper (1000 grit; 1000/4000 grit) or blasting (AlO; 1 bar/125 µm; 2 bar/125 µm; 1 bar/250 µm) to simulate laboratory treatment. Surface roughness (Arithmetic mean Sa/maximum roughness height Sz; ISO 25178-2); fracture force (FF) and biaxial flexural strength (BFS; ISO 6872) were determined. The number of dynamic load cycles (LC) to failure was determined under cyclic loading in a BFS staircase approach.
ANOVA, Bonferroni-test, Kaplan-Meier survival, Pearson correlation; α = 0.05.
BFS ranged between 94.4 MPa and 199.9 MPa, FF between 260.6 N and 428.6 N and Sa/Sz between 0.0/1.0 μm and 1.8/18.4 μm. BFS, FF and Sa/Sz showed significant differences between the treatments (p < 0.001) and individual groups (p ≤ 0.013). Mean LC ranged between 204,364 and 267,637 cycles. ANOVA comparisons (p = 0.706) and Log Rank test (Chi: 10,835; p = 0.094; Fig. 2) revealed no significant differences between the loading cycles. Surface treatment with either silicon carbide papers or blasting protocols had a significant influence on FF, BFS, Sa, and Sz, but not on LC.
Surface treatment affected the fracture force and biaxial fracture strength of a 3D-printed crown. It showed no influence on the long-term dynamic behavior.
Smooth surfaces improve the stability of a restoration fabricated from 3D-printing resins. Extensive surface roughness treatment before cementation can reduce the stability of a crown.
研究表面处理如何影响3D打印修复体的断裂力、弯曲强度以及直至失效的动态加载循环次数。
用丙烯酸酯基冠桥材料3D打印试件(7组;每组n = 8)。清洗并后聚合后,试件用碳化硅砂纸(1000目;1000/4000目)或喷砂处理(AlO;1巴/125微米;2巴/125微米;1巴/250微米)以模拟实验室处理。测定表面粗糙度(算术平均Sa/最大粗糙度高度Sz;ISO 25178 - 2)、断裂力(FF)和双轴弯曲强度(BFS;ISO 6872)。在BFS阶梯法的循环加载下测定直至失效的动态加载循环次数(LC)。
方差分析、Bonferroni检验、Kaplan - Meier生存分析、Pearson相关性分析;α = 0.05。
BFS在94.4兆帕至199.9兆帕之间,FF在260.6牛至428.6牛之间,Sa/Sz在0.0/1.0微米至1.8/18.4微米之间。BFS、FF和Sa/Sz在不同处理之间(p < 0.001)以及各个组之间(p ≤ 0.013)显示出显著差异。平均LC在204,364至267,637次循环之间。方差分析比较(p = 0.706)和对数秩检验(卡方:10,835;p = 0.094;图2)显示加载循环次数之间无显著差异。用碳化硅砂纸或喷砂方案进行表面处理对FF、BFS、Sa和Sz有显著影响,但对LC无影响。
表面处理影响3D打印冠的断裂力和双轴断裂强度。对长期动态行为无影响。
光滑表面可提高由3D打印树脂制成的修复体的稳定性。粘结前进行广泛的表面粗糙度处理会降低冠的稳定性。