Suppr超能文献

药物研发中的人工智能:重塑治疗格局。

Artificial intelligence in drug development: reshaping the therapeutic landscape.

作者信息

Niazi Sarfaraz K, Mariam Zamara

机构信息

College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, IL 60612, USA.

Centre for Health and Life Sciences, Coventry University, Coventry, UK.

出版信息

Ther Adv Drug Saf. 2025 Feb 24;16:20420986251321704. doi: 10.1177/20420986251321704. eCollection 2025.

Abstract

Artificial intelligence (AI) is transforming medication research and development, giving clinicians new treatment options. Over the past 30 years, machine learning, deep learning, and neural networks have revolutionized drug design, target identification, and clinical trial predictions. AI has boosted pharmaceutical R&D (research and development) by identifying new therapeutic targets, improving chemical designs, and predicting complicated protein structures. Furthermore, generative AI is accelerating the development and re-engineering of medicinal molecules to cater to both common and rare diseases. Although, to date, no AI-generated medicinal drug has been FDA-approved, HLX-0201 for fragile X syndrome and new molecules for idiopathic pulmonary fibrosis have entered clinical trials. However, AI models are generally considered "black boxes," making their conclusions challenging to understand and limiting the potential due to a lack of model transparency and algorithmic bias. Despite these obstacles, AI-driven drug discovery has substantially reduced development times and costs, expediting the process and financial risks of bringing new medicines to market. In the future, AI is expected to continue to impact pharmaceutical innovation positively, making life-saving drug discoveries faster, more efficient, and more widespread.

摘要

人工智能(AI)正在改变药物研发领域,为临床医生提供新的治疗选择。在过去30年里,机器学习、深度学习和神经网络彻底改变了药物设计、靶点识别和临床试验预测。人工智能通过识别新的治疗靶点、改进化学设计以及预测复杂的蛋白质结构,推动了制药研发(研究与开发)。此外,生成式人工智能正在加速药物分子的开发和重新设计,以满足常见和罕见疾病的需求。尽管迄今为止,尚无人工智能生成的药物获得美国食品药品监督管理局(FDA)的批准,但用于脆性X综合征的HLX-0201和用于特发性肺纤维化的新分子已进入临床试验阶段。然而,人工智能模型通常被视为“黑匣子”,其结论难以理解,且由于缺乏模型透明度和算法偏差而限制了其潜力。尽管存在这些障碍,人工智能驱动的药物发现已大幅缩短了开发时间和成本,加快了新药上市的进程和财务风险。未来,预计人工智能将继续对制药创新产生积极影响,使挽救生命的药物发现更快、更高效且更广泛。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a55/11851753/04588d12f2d8/10.1177_20420986251321704-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验