Suppr超能文献

利用人工智能提高横断面成像中肾癌的检出率:系统评价与荟萃分析方案

Utilisation of artificial intelligence to enhance the detection rates of renal cancer on cross-sectional imaging: protocol for a systematic review and meta-analysis.

作者信息

Ofagbor Ojone, Bhardwaj Gaurika, Zhao Yi, Baana Mohamed, Arkwazi Murtada, Lami Mariam, Bolton Eva, Heer Rakesh

机构信息

Department of Urology, Norfolk and Norwich University Hospital, Norwich, UK

Department of Urology, Imperial College Healthcare NHS Trust, London, UK.

出版信息

BMJ Open. 2025 Aug 31;15(8):e090422. doi: 10.1136/bmjopen-2024-090422.

Abstract

INTRODUCTION

The incidence of renal cell carcinoma has steadily been on the increase due to the increased use of imaging to identify incidental masses. Although survival has also improved because of early detection, overdiagnosis and overtreatment of benign renal masses are associated with significant morbidity, as patients with a suspected renal malignancy on imaging undergo invasive and risky procedures for a definitive diagnosis. Therefore, accurately characterising a renal mass as benign or malignant on imaging is paramount to improving patient outcomes. Artificial intelligence (AI) poses an exciting solution to the problem, augmenting traditional radiological diagnosis to increase detection accuracy. This report aims to investigate and summarise the current evidence about the diagnostic accuracy of AI in characterising renal masses on imaging.

METHODS AND ANALYSIS

This will involve systematically searching PubMed, MEDLINE, Embase, Web of Science, Scopus and Cochrane databases. Publications of research that have evaluated the use of automated AI, fully or to some extent, in cross-sectional imaging for diagnosing or characterising malignant renal tumours will be included if published between July 2016 and June 2025 and in English. The protocol adheres to the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols 2015 checklist. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) score will be used to evaluate the quality and risk of bias across included studies. Furthermore, in line with Checklist for Artificial Intelligence in Medical Imaging recommendations, studies will be evaluated for including the minimum necessary information on AI research reporting.

ETHICS AND DISSEMINATION

Ethical clearance will not be necessary for conducting this systematic review, and results will be disseminated through peer-reviewed publications and presentations at both national and international conferences.

PROSPERO REGISTRATION NUMBER

CRD42024529929.

摘要

引言

由于影像学检查用于发现偶然肿块的应用增加,肾细胞癌的发病率一直在稳步上升。尽管早期检测使生存率有所提高,但对良性肾肿块的过度诊断和过度治疗会带来显著的发病率,因为影像学检查怀疑有肾恶性肿瘤的患者需要接受侵入性和有风险的检查以明确诊断。因此,在影像学上准确将肾肿块定性为良性或恶性对于改善患者预后至关重要。人工智能(AI)为这一问题提供了令人兴奋的解决方案,可增强传统放射学诊断以提高检测准确性。本报告旨在调查和总结当前关于AI在影像学上对肾肿块定性诊断准确性的证据。

方法与分析

这将涉及系统检索PubMed、MEDLINE、Embase、科学网、Scopus和Cochrane数据库。如果研究发表于2016年7月至2025年6月之间且为英文,评估在横断面成像中完全或部分使用自动化AI诊断或定性恶性肾肿瘤的研究出版物将被纳入。该方案遵循2015年系统评价与Meta分析方案的首选报告项目清单。诊断准确性研究质量评估2(QUADAS - 2)评分将用于评估纳入研究的质量和偏倚风险。此外,根据医学影像人工智能清单建议,将评估研究是否包含AI研究报告的最低必要信息。

伦理与传播

进行这项系统评价无需伦理批准,结果将通过同行评审出版物以及在国内和国际会议上的报告进行传播。

PROSPERO注册号:CRD42024529929。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验