Suppr超能文献

一种原型ETL管道,在部署纯函数以丰富知识图谱患者数据时使用HL7 FHIR RDF资源。

A prototype ETL pipeline that uses HL7 FHIR RDF resources when deploying pure functions to enrich knowledge graph patient data.

作者信息

Ansari Adeel, Conte Marisa, Flynn Allen, Paturkar Avanti

机构信息

Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.

Department of Learning Health Sciences, Knowledge Systems Laboratory, University of Michigan Medical School, Victor Vaughan Building, Room 209, 1111 Catherine St., Ann Arbor, MI, 48109, USA.

出版信息

J Biomed Semantics. 2025 Sep 1;16(1):16. doi: 10.1186/s13326-025-00335-4.

Abstract

BACKGROUND

For clinical care and research, knowledge graphs with patient data can be enriched by extracting parameters from a knowledge graph and then using them as inputs to compute new patient features with pure functions. Systematic and transparent methods for enriching knowledge graphs with newly computed patient features are of interest. When enriching the patient data in knowledge graphs this way, existing ontologies and well-known data resource standards can help promote semantic interoperability.

RESULTS

We developed and tested a new data processing pipeline for extracting, computing, and returning newly computed results to a large knowledge graph populated with electronic health record and patient survey data. We show that RDF data resource types already specified by Health Level 7's FHIR RDF effort can be programmatically validated and then used by this new data processing pipeline to represent newly derived patient-level features.

CONCLUSIONS

Knowledge graph technology can be augmented with standards-based semantic data processing pipelines for deploying and tracing the use of pure functions to derive new patient-level features from existing data. Semantic data processing pipelines enable research enterprises to report on new patient-level computations of interest with linked metadata that details the origin and background of every new computation.

摘要

背景

对于临床护理和研究而言,通过从知识图谱中提取参数,然后将其用作输入,以纯函数计算新的患者特征,可丰富包含患者数据的知识图谱。人们对用新计算出的患者特征丰富知识图谱的系统且透明的方法很感兴趣。以这种方式丰富知识图谱中的患者数据时,现有的本体和知名的数据资源标准有助于促进语义互操作性。

结果

我们开发并测试了一种新的数据处理管道,用于提取、计算新计算结果,并将其返回至一个填充了电子健康记录和患者调查数据的大型知识图谱。我们表明,健康级别7(Health Level 7)的FHIR RDF工作已经指定的RDF数据资源类型可以通过编程进行验证,然后由这个新的数据处理管道用于表示新派生的患者级特征。

结论

知识图谱技术可以通过基于标准的语义数据处理管道进行扩展,以部署和追踪使用纯函数从现有数据中派生新的患者级特征的过程。语义数据处理管道使研究机构能够通过链接的元数据报告感兴趣的新患者级计算,这些元数据详细说明了每个新计算的来源和背景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验