文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

电子健康记录与 Fast Healthcare Interoperability Resources 的语义问题:系统映射综述。

Electronic Health Record and Semantic Issues Using Fast Healthcare Interoperability Resources: Systematic Mapping Review.

机构信息

École de technologie supérieure - ETS, Montreal, QC, Canada.

出版信息

J Med Internet Res. 2024 Jan 30;26:e45209. doi: 10.2196/45209.


DOI:10.2196/45209
PMID:38289660
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10865191/
Abstract

BACKGROUND: The increasing use of electronic health records and the Internet of Things has led to interoperability issues at different levels (structural and semantic). Standards are important not only for successfully exchanging data but also for appropriately interpreting them (semantic interoperability). Thus, to facilitate the semantic interoperability of data exchanged in health care, considerable resources have been deployed to improve the quality of shared clinical data by structuring and mapping them to the Fast Healthcare Interoperability Resources (FHIR) standard. OBJECTIVE: The aims of this study are 2-fold: to inventory the studies on FHIR semantic interoperability resources and terminologies and to identify and classify the approaches and contributions proposed in these studies. METHODS: A systematic mapping review (SMR) was conducted using 10 electronic databases as sources of information for inventory and review studies published during 2012 to 2022 on the development and improvement of semantic interoperability using the FHIR standard. RESULTS: A total of 70 FHIR studies were selected and analyzed to identify FHIR resource types and terminologies from a semantic perspective. The proposed semantic approaches were classified into 6 categories, namely mapping (31/126, 24.6%), terminology services (18/126, 14.3%), resource description framework or web ontology language-based proposals (24/126, 19%), annotation proposals (18/126, 14.3%), machine learning (ML) and natural language processing (NLP) proposals (20/126, 15.9%), and ontology-based proposals (15/126, 11.9%). From 2012 to 2022, there has been continued research in 6 categories of approaches as well as in new and emerging annotations and ML and NLP proposals. This SMR also classifies the contributions of the selected studies into 5 categories: framework or architecture proposals, model proposals, technique proposals, comparison services, and tool proposals. The most frequent type of contribution is the proposal of a framework or architecture to enable semantic interoperability. CONCLUSIONS: This SMR provides a classification of the different solutions proposed to address semantic interoperability using FHIR at different levels: collecting, extracting and annotating data, modeling electronic health record data from legacy systems, and applying transformation and mapping to FHIR models and terminologies. The use of ML and NLP for unstructured data is promising and has been applied to specific use case scenarios. In addition, terminology services are needed to accelerate their use and adoption; furthermore, techniques and tools to automate annotation and ontology comparison should help reduce human interaction.

摘要

背景:电子健康记录和物联网的使用日益增多,导致不同层面(结构和语义)的互操作性问题。标准不仅对于成功交换数据很重要,而且对于适当解释数据也很重要(语义互操作性)。因此,为了促进医疗保健中交换数据的语义互操作性,已经投入了大量资源,通过对数据进行结构化并将其映射到快速医疗保健互操作性资源(FHIR)标准,来提高共享临床数据的质量。

目的:本研究有两个目的:一是对 FHIR 语义互操作性资源和术语进行盘点,二是识别和分类这些研究中提出的方法和贡献。

方法:使用 10 个电子数据库作为信息源,开展了系统映射综述(SMR),对 2012 年至 2022 年期间发表的关于使用 FHIR 标准开发和改进语义互操作性的研究进行盘点和综述。

结果:共选择了 70 项 FHIR 研究,从语义角度对 FHIR 资源类型和术语进行了识别。所提出的语义方法分为 6 类,即映射(31/126,24.6%)、术语服务(18/126,14.3%)、基于资源描述框架或网络本体语言的建议(24/126,19%)、注释建议(18/126,14.3%)、机器学习(ML)和自然语言处理(NLP)建议(20/126,15.9%)和基于本体的建议(15/126,11.9%)。2012 年至 2022 年,这 6 类方法以及新出现的注释和 ML、NLP 建议都在不断进行研究。本 SMR 还将所选研究的贡献分为 5 类:框架或架构建议、模型建议、技术建议、比较服务和工具建议。最常见的贡献类型是提出框架或架构来实现语义互操作性。

结论:本 SMR 对使用 FHIR 在不同层面解决语义互操作性的不同解决方案进行了分类:收集、提取和注释数据、对遗留系统中的电子健康记录数据进行建模,以及对 FHIR 模型和术语应用转换和映射。对非结构化数据使用 ML 和 NLP 很有前景,并已应用于特定用例场景。此外,需要术语服务来加速其使用和采用;此外,用于自动化注释和本体比较的技术和工具应该有助于减少人工交互。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/e634c7dcfeeb/jmir_v26i1e45209_fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/7068c38acf18/jmir_v26i1e45209_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/6a3e5604ebf1/jmir_v26i1e45209_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/5e644b816900/jmir_v26i1e45209_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/c8d58e168393/jmir_v26i1e45209_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/b4b109bd093a/jmir_v26i1e45209_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/67a44593e8a1/jmir_v26i1e45209_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/7d331c27439e/jmir_v26i1e45209_fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/8759881640f0/jmir_v26i1e45209_fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/e634c7dcfeeb/jmir_v26i1e45209_fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/7068c38acf18/jmir_v26i1e45209_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/6a3e5604ebf1/jmir_v26i1e45209_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/5e644b816900/jmir_v26i1e45209_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/c8d58e168393/jmir_v26i1e45209_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/b4b109bd093a/jmir_v26i1e45209_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/67a44593e8a1/jmir_v26i1e45209_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/7d331c27439e/jmir_v26i1e45209_fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/8759881640f0/jmir_v26i1e45209_fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/10865191/e634c7dcfeeb/jmir_v26i1e45209_fig9.jpg

相似文献

[1]
Electronic Health Record and Semantic Issues Using Fast Healthcare Interoperability Resources: Systematic Mapping Review.

J Med Internet Res. 2024-1-30

[2]
A systematic review of data elements of computerized physician order entry (CPOE): mapping the data to FHIR.

Inform Health Soc Care. 2023-10-2

[3]
[Volume and health outcomes: evidence from systematic reviews and from evaluation of Italian hospital data].

Epidemiol Prev. 2013

[4]
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.

JBI Database System Rev Implement Rep. 2016-4

[5]
Standardizing imaging findings representation: harnessing Common Data Elements semantics and Fast Healthcare Interoperability Resources structures.

J Am Med Inform Assoc. 2024-8-1

[6]
Impacts of structuring the electronic health record: Results of a systematic literature review from the perspective of secondary use of patient data.

Int J Med Inform. 2017-1

[7]
A knowledge-based taxonomy of critical factors for adopting electronic health record systems by physicians: a systematic literature review.

BMC Med Inform Decis Mak. 2010-10-15

[8]
Machine Learning and Natural Language Processing in Mental Health: Systematic Review.

J Med Internet Res. 2021-5-4

[9]
Home treatment for mental health problems: a systematic review.

Health Technol Assess. 2001

[10]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

引用本文的文献

[1]
Semantics-driven improvements in electronic health records data quality: a systematic review.

BMC Med Inform Decis Mak. 2025-8-11

[2]
Rare diseases: ethical challenges in the era of digital health.

Front Digit Health. 2025-7-9

[3]
Use of clinical care classification terminology in the nursing field: A scoping review.

Int J Nurs Stud Adv. 2025-5-2

[4]
Semantic Difficulties in FHIR 'Conditions'.

Stud Health Technol Inform. 2025-5-15

[5]
Semi-automated pipeline to accelerate multi-site flowsheet alignment and concept mapping in electronic health records.

J Am Med Inform Assoc. 2025-7-1

[6]
State-of-the-Art Fast Healthcare Interoperability Resources (FHIR)-Based Data Model and Structure Implementations: Systematic Scoping Review.

JMIR Med Inform. 2024-9-24

[7]
Leveraging Electronic Health Records to Predict the Risk of Acute Kidney Injury after Allogeneic Hematopoietic Cell Transplantation.

Life (Basel). 2024-8-8

[8]
A reference architecture for personal health data spaces using decentralized content-addressable storage networks.

Front Med (Lausanne). 2024-7-16

本文引用的文献

[1]
HL7 FHIR with SNOMED-CT to Achieve Semantic and Structural Interoperability in Personal Health Data: A Proof-of-Concept Study.

Sensors (Basel). 2022-5-15

[2]
TerminoDiff - Detecting Semantic Differences in HL7 FHIR CodeSystems.

Stud Health Technol Inform. 2022-5-25

[3]
Modeling Medical Guidelines by Prova and SHACL Accessing FHIR/RDF. Use Case: The Medical ABCDE Approach.

Stud Health Technol Inform. 2022-5-16

[4]
ELaPro, a LOINC-mapped core dataset for top laboratory procedures of eligibility screening for clinical trials.

BMC Med Res Methodol. 2022-5-14

[5]
Generation of a Fast Healthcare Interoperability Resources (FHIR)-based Ontology for Federated Feasibility Queries in the Context of COVID-19: Feasibility Study.

JMIR Med Inform. 2022-4-27

[6]
Semantic interoperability in health records standards: a systematic literature review.

Health Technol (Berl). 2022

[7]
Semantics Management for a Regional Health Information System in Italy by CTS2 and FHIR.

Stud Health Technol Inform. 2021-11-18

[8]
A Methodology for an Auto-Generated and Auto-Maintained HL7 FHIR OWL Ontology for Health Data Management.

Stud Health Technol Inform. 2021-11-18

[9]
Providing ART-DECOR ValueSets via FHIR Terminology Servers - A Technical Report.

Stud Health Technol Inform. 2021-9-21

[10]
Enhancing narrative clinical guidance with computer-readable artifacts: Authoring FHIR implementation guides based on WHO recommendations.

J Biomed Inform. 2021-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索