Shang Jin, Zhen Yanhua, Zhang Zhezhe, Wang Ziyi, Xu Hang, Pan Yilong, Chen Hongyu, Sun Lu, Pan Xin, Ju Ronghui, Hou Yang
Department of Radiology, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
Cardiovasc Diabetol. 2025 Aug 31;24(1):356. doi: 10.1186/s12933-025-02913-3.
Pericoronary adipose tissue (PCAT) radiomics derived from coronary computed tomography angiography (CCTA) for predicting major adverse cardiovascular events (MACE) in patients with acute coronary syndrome (ACS) remains unclear. This study aimed to assess whether PCAT radiomics could further provide complementary predictive value for the risk of MACE during long-term follow-up.
A multicenter retrospective study enrolled 777 subjects who underwent pre-intervention CCTA at 3 medical centers. Patients from one institution (n = 664) formed an internal cohort and were randomly split into training and internal test sets (7:3). Multivariable Cox regression models were developed using clinical scores, traditional CCTA, PCAT attenuation (PCATa) and PCAT radiomics, and were tested using the internal test set. Data from two additional institutions (n = 113) were reserved as an external test set to evaluate the applicability and generalizability of models.
A total of 777 participants (61.0 ± 9.70 years; 506 males) were analyzed. During a median follow-up of 5.45 years (interquartile range: 4.03, 7.12 years), 177 (22.78%) cases experienced a MACE. Adding culprit PCATa or three vessels-based PCATa did not improve predictive ability for the model containing clinical scores and traditional CCTA, whereas further addition of PCAT Radscore (C-index: 0.721, 0.652, 0.645) and three vessels-based PCAT Radscore (C-index: 0.725, 0.660, 0.686) improved model predictive performance in the training, internal test and external test sets, without significant differences between datasets or models (all P > 0.05). Adding either the PCAT Radscore (training: IDI = 0.031, p < 0.001; NRI = 0.256, p < 0.001; external test: IDI = 0.094, p < 0.001; NRI = 0.339, p = 0.02) or the three vessels-based PCAT Radscore (training: IDI = 0.032, p < 0.001; NRI = 0.224, p = 0.02; external test: IDI = 0.126, p < 0.001; NRI = 0.480, p < 0.001) to a clinical model yielded a significant improvement in discrimination and reclassification ability in the training and external test sets, respectively.
PCAT radiomics can enhance long-term prediction of MACE in ACS patients beyond current clinical scores, traditional CCTA and PCATa. Addition of PCAT radiomics to a conventional risk assessment improves the identification of high-risk individuals with MACE.
源自冠状动脉计算机断层扫描血管造影(CCTA)的冠状动脉周围脂肪组织(PCAT)放射组学在预测急性冠状动脉综合征(ACS)患者的主要不良心血管事件(MACE)方面仍不明确。本研究旨在评估PCAT放射组学是否能在长期随访期间为MACE风险进一步提供补充预测价值。
一项多中心回顾性研究纳入了777名在3个医疗中心接受干预前CCTA的受试者。来自一个机构的患者(n = 664)组成内部队列,并随机分为训练集和内部测试集(7:3)。使用临床评分、传统CCTA、PCAT衰减(PCATa)和PCAT放射组学建立多变量Cox回归模型,并使用内部测试集进行测试。来自另外两个机构(n = 113)的数据留作外部测试集,以评估模型的适用性和可推广性。
共分析了777名参与者(61.0±9.70岁;506名男性)。在中位随访5.45年(四分位间距:4.03,7.12年)期间,177例(22.78%)发生了MACE。添加罪犯病变PCATa或三支血管的PCATa并未提高包含临床评分和传统CCTA的模型的预测能力,而进一步添加PCAT放射学评分(C指数:0.721、0.652、0.645)和三支血管的PCAT放射学评分(C指数:0.725、0.660、0.686)可提高训练集、内部测试集和外部测试集的模型预测性能,各数据集或模型之间无显著差异(所有P>0.05)。在临床模型中添加PCAT放射学评分(训练集:IDI = 0.031,p<0.001;NRI = 0.256,p<0.001;外部测试集:IDI = 0.094,p<0.001;NRI = 0.339,p = 0.02)或三支血管的PCAT放射学评分(训练集:IDI = 0.032,p<0.001;NRI = 0.224,p = 0.02;外部测试集:IDI = 0.126,p<0.001;NRI = 0.480,p<0.001)分别在训练集和外部测试集中显著提高了辨别能力和重新分类能力。
PCAT放射组学可增强ACS患者MACE的长期预测能力,超越当前临床评分、传统CCTA和PCATa。将PCAT放射组学添加到传统风险评估中可改善对MACE高危个体的识别。