Suppr超能文献

RENOVO-NF1能准确预测1型神经纤维瘤病错义变异的致病性。

RENOVO-NF1 accurately predicts NF1 missense variant pathogenicity.

作者信息

Bonetti Emanuele, Pellegatta Serena, Rosati Nayma, Eoli Marica, Mazzarella Luca

机构信息

Laboratory of Translational Oncology, European Institute of Oncology IRCCS, Milan, Italy.

Neuroncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.

出版信息

Hum Genomics. 2025 Aug 31;19(1):106. doi: 10.1186/s40246-025-00803-z.

Abstract

Identification of a pathogenic variant in NF1 is diagnostic for neurofibromatosis, but is often impossible at the moment of variant detection due to many factors including allelic heterogeneity, sequence homology, and the lack of functional assays. Computational tools may aid in interpretation but are not established for NF1. Here, we optimized our random forest-based predictor RENOVO for NF1 variant interpretation. RENOVO was developed using an approach of "database archaeology": by comparing versions of ClinVar over the years, we defined "stable" variants that maintained the same pathogenic/likely pathogenic/benign/likely benign (P/LP/B/LB) classification over time (n = 3579, the training set), and "unstable" variants that were initially classified as Variants of Unknown Significance (VUS) but were subsequently reclassified as P/LP/B/LB (n = 57, the test set). This approach allows to retrospectively measure accuracy on prediction with insufficient information, reproducing the scenario of maximal clinical utility. We further validated performance on: (i) validation set 1: 100 NF1 variants classified as VUS at the time of RENOVO development and subsequently reclassified as P/LP/B/LB in ClinVar; (ii) validation set 2: 15 de novo variants discovered in a prospective clinical cohort and subsequently reclassified per ACMG criteria. RENOVO obtained consistently high accuracy on all datasets: 98.6% on the training test, 96.5% in the test set, 82% in validation set 1 (but 96.2% for missense variants) and 93.7% on validation set 2. In conclusion, RENOVO-NF1 accurately interprets NF1 variants for which information at the time of detection is insufficient for ACMG classification and may overcome diagnostic challenges in neurofibromatosis.

摘要

鉴定出NF1基因的致病变异可诊断神经纤维瘤病,但由于包括等位基因异质性、序列同源性以及缺乏功能检测等多种因素,在检测到变异时往往无法确诊。计算工具可能有助于解读,但尚未确立用于NF1基因。在此,我们优化了基于随机森林的预测器RENOVO以用于NF1基因变异解读。RENOVO是采用“数据库考古”方法开发的:通过比较多年来ClinVar的版本,我们定义了随时间保持相同致病/可能致病/良性/可能良性(P/LP/B/LB)分类的“稳定”变异(n = 3579,训练集),以及最初分类为意义未明变异(VUS)但随后重新分类为P/LP/B/LB的“不稳定”变异(n = 57,测试集)。这种方法能够在信息不足的情况下回顾性地衡量预测准确性,重现最大临床效用的情况。我们进一步在以下方面验证了性能:(i)验证集1:在RENOVO开发时分类为VUS且随后在ClinVar中重新分类为P/LP/B/LB的100个NF1基因变异;(ii)验证集2:在前瞻性临床队列中发现并随后根据ACMG标准重新分类的15个新发变异。RENOVO在所有数据集上均获得了一致的高精度:训练测试集上为98.6%,测试集中为96.5%,验证集1中为82%(错义变异为96.2%),验证集2中为93.7%。总之,RENOVO - NF1能够准确解读检测时信息不足以进行ACMG分类的NF1基因变异,并可能克服神经纤维瘤病的诊断挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验