Porretta Alessandra Pia, Fressart Véronique, Surget Elodie, Morgat Charles, Bloch Adrien, Messali Anne, Algalarrondo Vincent, Vedrenne Géraldine, Pruvot Etienne, Leenhardt Antoine, Denjoy Isabelle, Extramiana Fabrice
CNMR Maladies Cardiaques Héréditaires Rares, APHP, Hôpital Bichat Claude-Bernard, Paris, France.
Service of Cardiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland.
Mol Diagn Ther. 2025 May 21. doi: 10.1007/s40291-025-00784-8.
Accurate interpretation of genetic variants still represents a major challenge. According to current recommendations from the American College of Medical Genetics and Genomics (ACMG), variant interpretation relies on a comprehensive analysis including, among others, computational data for prediction of variant pathogenicity. However, the predictive accuracy of in silico tools is often limited, and results are frequently inconsistent. In the current study, we evaluated the predictive performance of a previously described innovative classifier (MutScore) for missense variants in our cohort of probands with inherited cardiac diseases (InCDs).
We retrospectively reviewed missense variants detected in our cohort of probands with InCDs. Variants were analyzed with four in silico tools commonly used in our diagnostic pipelines (CADD, Polyphen-2, Alpha-missense and Revel) and with MutScore, a new meta-predictor combining data on variant location with the output of 16 existing predictors. For each variant, we recorded the original classification (established according to scientific evidence available at the time of molecular diagnosis) and the updated classification performed at the present time, according to ACMG standards.
We detected 252 missense variants in our cohort of 517 patients affected by InCDs. MutScore was the most proficient tool in classifying variants (0.89 maximum area under the curve [95% confidence interval (CI) 0.85-0.94]). Compared to Revel, the second-best predictor, MutScore showed superior sensitivity (73% vs 57%) at the maximum tolerated false-positive rate of 10%, higher specificity (0.83 vs 0.36) and a markedly lower false-positive rate (0.17 vs 0.64), supporting a more nuanced and accurate assessment, especially for benign or likely benign variants. MutScore also appeared to perform better for variants located in genes associated with channelopathies than for variants in cardiomyopathy-related genes. Notably, when comparing the original and updated classification, 27% (69/252) of missense variants underwent a change in classification over the 9-year follow-up period. Among these, reclassification had a significant impact on clinical management in one third of cases (i.e., variants of uncertain significance upgraded to pathogenic or likely pathogenic variants or vice versa), with a 4.8% increase in molecular diagnosis of InCDs over the 9-year period.
Our study supports the excellent performance of MutScore in a real-life dataset of missense variants associated with the rare subset of InCDs. MutScore represents a promising application of artificial intelligence with major potential in cardiogenetics to improve diagnostic precision in clinical practice. In addition, our results highlight the importance of periodic reanalysis of variants, incorporating newly available scientific evidence, as attested by the significant implications for patient management and clinical decision-making.
准确解读基因变异仍然是一项重大挑战。根据美国医学遗传学与基因组学学会(ACMG)目前的建议,变异解读依赖于全面分析,其中包括用于预测变异致病性的计算数据。然而,计算机模拟工具的预测准确性往往有限,结果也常常不一致。在本研究中,我们评估了一种先前描述的创新分类器(MutScore)在我们的遗传性心脏病(InCDs)先证者队列中对错义变异的预测性能。
我们回顾性分析了在我们的InCDs先证者队列中检测到的错义变异。使用我们诊断流程中常用的四种计算机模拟工具(CADD、Polyphen-2、Alpha-missense和Revel)以及MutScore对变异进行分析,MutScore是一种新的元预测器,它将变异位置的数据与16种现有预测器的输出结果相结合。对于每个变异,我们记录了原始分类(根据分子诊断时可用的科学证据确定)以及根据ACMG标准目前进行的更新分类。
我们在517例受InCDs影响的患者队列中检测到252个错义变异。MutScore是变异分类方面最出色的工具(曲线下面积最大值为0.89 [95%置信区间(CI)0.85 - 0.94])。与第二好的预测器Revel相比,在最大耐受假阳性率为10%时,MutScore显示出更高的灵敏度(73%对57%)、更高的特异性(0.83对0.36)以及显著更低的假阳性率(0.17对0.64),支持了更细致和准确的评估,特别是对于良性或可能良性的变异。MutScore对于位于与离子通道病相关基因中的变异似乎比对心肌病相关基因中的变异表现更好。值得注意的是,在比较原始分类和更新分类时,27%(69/252)的错义变异在9年的随访期内分类发生了变化。其中,重新分类在三分之一的病例中对临床管理产生了重大影响(即意义不确定的变异升级为致病性或可能致病性变异,反之亦然),在9年期间InCDs的分子诊断增加了4.8%。
我们的研究支持了MutScore在与InCDs罕见子集相关的错义变异真实数据集上的出色性能。MutScore代表了人工智能的一个有前景的应用,在心脏遗传学中具有巨大潜力,可提高临床实践中的诊断精度。此外,我们的结果突出了结合新获得的科学证据定期重新分析变异的重要性,这对患者管理和临床决策具有重大影响。