文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Development of a Machine Learning Model Integrating Pathomics and Clinical Data to Predict Axillary Lymph Node Metastasis in Breast Cancer: A Two-Center Study.

作者信息

Wang Long, Qu Fanli, Wen Ping, Luo Yu, Zhang Huan, Li Shanqi, Yin Xuedong, Zhao Yulan, Zeng Xiaohua

机构信息

Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China.

Department of Breast Cancer Center, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China.

出版信息

Cancer Rep (Hoboken). 2025 Sep;8(9):e70302. doi: 10.1002/cnr2.70302.


DOI:10.1002/cnr2.70302
PMID:40887934
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12399835/
Abstract

BACKGROUND: Accurately assessing the status of axillary lymph nodes (ALNs) is essential for devising optimal surgical plans and making informed treatment decisions in breast cancer (BC) patients. AIMS: This study aims to develop an innovative nomogram based on pathomics to preoperatively predict ALN metastasis (ALNM) in BC. METHODS AND RESULTS: Our study performed a retrospective analysis on digital hematoxylin and eosin (H&E)-stained images obtained from 407 patients across two institutions who were allocated into a training cohort (TC; n = 203), an internal validation cohort (IVC; n = 136), and an external validation cohort (EVC; n = 68). Initially, the Mann-Whitney U-test and Spearman's rank correlation coefficient were utilized for feature selection, employing the least absolute shrinkage and selection operator (LASSO) regression for further refinement. For the evaluation of the predictive value of ALNM and other clinicopathological factors, we deployed both univariate (ULR) and multivariate (MLR) logistic regression analyses. Among the six machine learning (ML) algorithms, logistic regression, which demonstrated the highest area under the curve (AUC) value, was employed to establish the final nomogram model. The nomogram reliability and stability were assessed by analyzing the AUC of the receiver operating characteristic (ROC) curve, decision curve analysis (DCA), and calibration plots. MLR analysis demonstrated estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), tumor size, and pathomics features as independent ALNM predictors. The nomogram demonstrated that the AUC in the IVC (0.783) surpassed that of the Path-score model (0.698) (DeLong test, p = 0.008558). Similarly, in the EVC, the nomogram surpassed the clinical model regarding AUC (0.738 vs. 0.574; DeLong test, p = 0.00494). Additionally, DCA analysis indicated a net clinical benefit associated with the nomogram. CONCLUSION: Our study demonstrates the effectiveness of pathomics features in predicting ALNM in BC patients. Furthermore, the pathomics-based nomogram offers a valuable tool for personalized treatment planning in this patient population.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/070f/12399835/d1e647b9ab7f/CNR2-8-e70302-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/070f/12399835/5a4eec1e7e96/CNR2-8-e70302-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/070f/12399835/bb58c7186e8e/CNR2-8-e70302-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/070f/12399835/8fccecc7f20a/CNR2-8-e70302-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/070f/12399835/0b6b91fe891b/CNR2-8-e70302-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/070f/12399835/53909a6f1329/CNR2-8-e70302-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/070f/12399835/9446692269df/CNR2-8-e70302-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/070f/12399835/d1e647b9ab7f/CNR2-8-e70302-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/070f/12399835/5a4eec1e7e96/CNR2-8-e70302-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/070f/12399835/bb58c7186e8e/CNR2-8-e70302-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/070f/12399835/8fccecc7f20a/CNR2-8-e70302-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/070f/12399835/0b6b91fe891b/CNR2-8-e70302-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/070f/12399835/53909a6f1329/CNR2-8-e70302-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/070f/12399835/9446692269df/CNR2-8-e70302-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/070f/12399835/d1e647b9ab7f/CNR2-8-e70302-g003.jpg

相似文献

[1]
Development of a Machine Learning Model Integrating Pathomics and Clinical Data to Predict Axillary Lymph Node Metastasis in Breast Cancer: A Two-Center Study.

Cancer Rep (Hoboken). 2025-9

[2]
Developing and Evaluating a Nomogram Model Predicting Axillary Lymph Node Metastasis of Triple-Negative Breast Cancer Based on Multimodal Imaging Characteristics.

Acad Radiol. 2025-8

[3]
Identifying low-risk breast cancer patients for axillary biopsy exemption: a multimodal preoperative predictive model.

Eur J Med Res. 2025-7-28

[4]
Establishment of Prediction Model of Axillary Lymph Node Metastasis Before Operation for Early-Stage Breast Cancer.

Cancer Control. 2025

[5]
Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast cancer.

Sci Rep. 2025-7-18

[6]
Radiomics nomogram based on digital breast tomosynthesis: preoperative evaluation of axillary lymph node metastasis in breast carcinoma.

J Cancer Res Clin Oncol. 2023-9

[7]
A radiogenomic multimodal and whole-transcriptome sequencing for preoperative prediction of axillary lymph node metastasis and drug therapeutic response in breast cancer: a retrospective, machine learning and international multicohort study.

Int J Surg. 2024-4-1

[8]
A Validated Ultrasound-Based Scoring System to Stratify Risk of Axillary Metastasis in Breast Cancer: AX-RADS (Axillary Imaging Reporting and Data System).

J Surg Oncol. 2025-7

[9]
Contrast-enhanced ultrasound radiomics model for predicting axillary lymph node metastasis and prognosis in breast cancer: a multicenter study.

BMC Cancer. 2025-8-14

[10]
Prediction of the 70-gene signature (MammaPrint) high versus low risk by nomograms among axillary lymph node positive (LN+) and negative (LN-) Chinese breast cancer patients, a retrospective study.

BMC Cancer. 2025-7-1

本文引用的文献

[1]
Pathomics Signature for Prognosis and Chemotherapy Benefits in Stage III Colon Cancer.

JAMA Surg. 2024-5-1

[2]
Standardizing digital biobanks: integrating imaging, genomic, and clinical data for precision medicine.

J Transl Med. 2024-2-5

[3]
Association of the pathomics-collagen signature with lymph node metastasis in colorectal cancer: a retrospective multicenter study.

J Transl Med. 2024-1-25

[4]
Histopathology images-based deep learning prediction of prognosis and therapeutic response in small cell lung cancer.

NPJ Digit Med. 2024-1-18

[5]
Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review.

Ann Oncol. 2024-1

[6]
Cancer statistics, 2023.

CA Cancer J Clin. 2023-1

[7]
Combined Single-Cell and Spatial Transcriptomics Reveal the Metabolic Evolvement of Breast Cancer during Early Dissemination.

Adv Sci (Weinh). 2023-2

[8]
Diagnostic performance of radiomics in predicting axillary lymph node metastasis in breast cancer: A systematic review and meta-analysis.

Front Oncol. 2022-11-28

[9]
Noninvasive prediction of axillary lymph node status in breast cancer using promoter profiling of circulating cell-free DNA.

J Transl Med. 2022-12-3

[10]
Targeting HER2-positive breast cancer: advances and future directions.

Nat Rev Drug Discov. 2023-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索