Wang Long, Qu Fanli, Wen Ping, Luo Yu, Zhang Huan, Li Shanqi, Yin Xuedong, Zhao Yulan, Zeng Xiaohua
Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China.
Department of Breast Cancer Center, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China.
Cancer Rep (Hoboken). 2025 Sep;8(9):e70302. doi: 10.1002/cnr2.70302.
Accurately assessing the status of axillary lymph nodes (ALNs) is essential for devising optimal surgical plans and making informed treatment decisions in breast cancer (BC) patients.
This study aims to develop an innovative nomogram based on pathomics to preoperatively predict ALN metastasis (ALNM) in BC.
Our study performed a retrospective analysis on digital hematoxylin and eosin (H&E)-stained images obtained from 407 patients across two institutions who were allocated into a training cohort (TC; n = 203), an internal validation cohort (IVC; n = 136), and an external validation cohort (EVC; n = 68). Initially, the Mann-Whitney U-test and Spearman's rank correlation coefficient were utilized for feature selection, employing the least absolute shrinkage and selection operator (LASSO) regression for further refinement. For the evaluation of the predictive value of ALNM and other clinicopathological factors, we deployed both univariate (ULR) and multivariate (MLR) logistic regression analyses. Among the six machine learning (ML) algorithms, logistic regression, which demonstrated the highest area under the curve (AUC) value, was employed to establish the final nomogram model. The nomogram reliability and stability were assessed by analyzing the AUC of the receiver operating characteristic (ROC) curve, decision curve analysis (DCA), and calibration plots. MLR analysis demonstrated estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), tumor size, and pathomics features as independent ALNM predictors. The nomogram demonstrated that the AUC in the IVC (0.783) surpassed that of the Path-score model (0.698) (DeLong test, p = 0.008558). Similarly, in the EVC, the nomogram surpassed the clinical model regarding AUC (0.738 vs. 0.574; DeLong test, p = 0.00494). Additionally, DCA analysis indicated a net clinical benefit associated with the nomogram.
Our study demonstrates the effectiveness of pathomics features in predicting ALNM in BC patients. Furthermore, the pathomics-based nomogram offers a valuable tool for personalized treatment planning in this patient population.
准确评估腋窝淋巴结(ALN)状态对于制定乳腺癌(BC)患者的最佳手术方案和做出明智的治疗决策至关重要。
本研究旨在开发一种基于病理组学的创新列线图,用于术前预测BC患者的ALN转移(ALNM)。
我们的研究对从两个机构的407例患者获得的数字苏木精和伊红(H&E)染色图像进行了回顾性分析,这些患者被分为训练队列(TC;n = 203)、内部验证队列(IVC;n = 136)和外部验证队列(EVC;n = 68)。最初,使用曼-惠特尼U检验和斯皮尔曼等级相关系数进行特征选择,采用最小绝对收缩和选择算子(LASSO)回归进行进一步优化。为了评估ALNM和其他临床病理因素的预测价值,我们进行了单变量(ULR)和多变量(MLR)逻辑回归分析。在六种机器学习(ML)算法中,选择曲线下面积(AUC)值最高的逻辑回归来建立最终的列线图模型。通过分析受试者工作特征(ROC)曲线的AUC、决策曲线分析(DCA)和校准图来评估列线图的可靠性和稳定性。MLR分析表明雌激素受体(ER)、人表皮生长因子受体2(HER2)、肿瘤大小和病理组学特征是独立的ALNM预测因子。列线图显示IVC中的AUC(0.783)超过了Path评分模型的AUC(0.698)(德龙检验,p = 0.008558)。同样,在EVC中,列线图在AUC方面超过了临床模型(0.738对0.574;德龙检验,p = 0.00494)。此外,DCA分析表明列线图具有净临床益处。
我们的研究证明了病理组学特征在预测BC患者ALNM中的有效性。此外,基于病理组学的列线图为该患者群体的个性化治疗规划提供了有价值的工具。