基于组织病理学图像的小细胞肺癌预后和治疗反应的深度学习预测

Histopathology images-based deep learning prediction of prognosis and therapeutic response in small cell lung cancer.

作者信息

Zhang Yibo, Yang Zijian, Chen Ruanqi, Zhu Yanli, Liu Li, Dong Jiyan, Zhang Zicheng, Sun Xujie, Ying Jianming, Lin Dongmei, Yang Lin, Zhou Meng

机构信息

Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.

School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, P. R. China.

出版信息

NPJ Digit Med. 2024 Jan 18;7(1):15. doi: 10.1038/s41746-024-01003-0.

Abstract

Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer characterized by rapid tumor growth and early metastasis. Accurate prediction of prognosis and therapeutic response is crucial for optimizing treatment strategies and improving patient outcomes. In this study, we conducted a deep-learning analysis of Hematoxylin and Eosin (H&E) stained histopathological images using contrastive clustering and identified 50 intricate histomorphological phenotype clusters (HPCs) as pathomic features. We identified two of 50 HPCs with significant prognostic value and then integrated them into a pathomics signature (PathoSig) using the Cox regression model. PathoSig showed significant risk stratification for overall survival and disease-free survival and successfully identified patients who may benefit from postoperative or preoperative chemoradiotherapy. The predictive power of PathoSig was validated in independent multicenter cohorts. Furthermore, PathoSig can provide comprehensive prognostic information beyond the current TNM staging system and molecular subtyping. Overall, our study highlights the significant potential of utilizing histopathology images-based deep learning in improving prognostic predictions and evaluating therapeutic response in SCLC. PathoSig represents an effective tool that aids clinicians in making informed decisions and selecting personalized treatment strategies for SCLC patients.

摘要

小细胞肺癌(SCLC)是一种侵袭性很强的肺癌亚型,其特点是肿瘤生长迅速且早期转移。准确预测预后和治疗反应对于优化治疗策略和改善患者预后至关重要。在本研究中,我们使用对比聚类对苏木精和伊红(H&E)染色的组织病理学图像进行了深度学习分析,并确定了50个复杂的组织形态学表型簇(HPCs)作为病理特征。我们在50个HPCs中确定了两个具有显著预后价值的簇,然后使用Cox回归模型将它们整合到一个病理组学特征(PathoSig)中。PathoSig在总生存期和无病生存期方面显示出显著的风险分层,并成功识别出可能从术后或术前放化疗中获益的患者。PathoSig的预测能力在独立的多中心队列中得到了验证。此外,PathoSig可以提供超出当前TNM分期系统和分子亚型的全面预后信息。总体而言,我们的研究突出了利用基于组织病理学图像的深度学习在改善SCLC预后预测和评估治疗反应方面的巨大潜力。PathoSig是一种有效的工具,可帮助临床医生为SCLC患者做出明智的决策并选择个性化的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8158/10796367/35fb19339ec0/41746_2024_1003_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索