文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在免疫肿瘤学预测生物标志物发现中的应用:系统评价。

Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review.

机构信息

Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan; Nearlab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milano, Italy; ESMO Real World Data and Digital Health Working Group, ESMO, Lugano, Switzerland.

Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan; Nearlab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milano, Italy.

出版信息

Ann Oncol. 2024 Jan;35(1):29-65. doi: 10.1016/j.annonc.2023.10.125. Epub 2023 Oct 23.


DOI:10.1016/j.annonc.2023.10.125
PMID:37879443
Abstract

BACKGROUND: The widespread use of immune checkpoint inhibitors (ICIs) has revolutionised treatment of multiple cancer types. However, selecting patients who may benefit from ICI remains challenging. Artificial intelligence (AI) approaches allow exploitation of high-dimension oncological data in research and development of precision immuno-oncology. MATERIALS AND METHODS: We conducted a systematic literature review of peer-reviewed original articles studying the ICI efficacy prediction in cancer patients across five data modalities: genomics (including genomics, transcriptomics, and epigenomics), radiomics, digital pathology (pathomics), and real-world and multimodality data. RESULTS: A total of 90 studies were included in this systematic review, with 80% published in 2021-2022. Among them, 37 studies included genomic, 20 radiomic, 8 pathomic, 20 real-world, and 5 multimodal data. Standard machine learning (ML) methods were used in 72% of studies, deep learning (DL) methods in 22%, and both in 6%. The most frequently studied cancer type was non-small-cell lung cancer (36%), followed by melanoma (16%), while 25% included pan-cancer studies. No prospective study design incorporated AI-based methodologies from the outset; rather, all implemented AI as a post hoc analysis. Novel biomarkers for ICI in radiomics and pathomics were identified using AI approaches, and molecular biomarkers have expanded past genomics into transcriptomics and epigenomics. Finally, complex algorithms and new types of AI-based markers, such as meta-biomarkers, are emerging by integrating multimodal/multi-omics data. CONCLUSION: AI-based methods have expanded the horizon for biomarker discovery, demonstrating the power of integrating multimodal data from existing datasets to discover new meta-biomarkers. While most of the included studies showed promise for AI-based prediction of benefit from immunotherapy, none provided high-level evidence for immediate practice change. A priori planned prospective trial designs are needed to cover all lifecycle steps of these software biomarkers, from development and validation to integration into clinical practice.

摘要

背景:免疫检查点抑制剂(ICI)的广泛应用彻底改变了多种癌症的治疗方式。然而,选择可能从 ICI 中获益的患者仍然具有挑战性。人工智能(AI)方法允许在肿瘤学的高维数据中进行研究,并开发精准免疫肿瘤学。

材料和方法:我们对五项数据模式(基因组学(包括基因组学、转录组学和表观基因组学)、放射组学、数字病理学(病组学)、真实世界和多模态数据)中癌症患者ICI 疗效预测的同行评审原始研究进行了系统文献回顾。

结果:本系统综述共纳入 90 项研究,其中 80%的研究发表于 2021-2022 年。其中,37 项研究包含基因组学数据,20 项研究包含放射组学数据,8 项研究包含病组学数据,20 项研究包含真实世界数据,5 项研究包含多模态数据。72%的研究使用了标准机器学习(ML)方法,22%使用了深度学习(DL)方法,6%同时使用了 ML 和 DL 方法。研究最多的癌症类型是非小细胞肺癌(36%),其次是黑色素瘤(16%),25%的研究为泛癌研究。没有前瞻性研究设计从一开始就纳入 AI 方法,而是都将 AI 作为事后分析来实施。通过 AI 方法在放射组学和病组学中确定了ICI 的新生物标志物,并且分子生物标志物已从基因组学扩展到转录组学和表观基因组学。最后,通过整合多模态/多组学数据,新兴的复杂算法和新型 AI 标志物(如元生物标志物)正在涌现。

结论:基于 AI 的方法为生物标志物的发现开辟了新的视野,展示了整合现有数据集的多模态数据以发现新的元生物标志物的能力。虽然大多数纳入的研究都为基于 AI 的免疫治疗获益预测提供了希望,但没有一项研究为立即改变实践提供了高级别的证据。需要前瞻性的、预先计划的临床试验设计来涵盖这些软件生物标志物的所有生命周期步骤,从开发和验证到整合到临床实践中。

相似文献

[1]
Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review.

Ann Oncol. 2024-1

[2]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[3]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[4]
Home treatment for mental health problems: a systematic review.

Health Technol Assess. 2001

[5]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[6]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[7]
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.

Cochrane Database Syst Rev. 2020-10-19

[8]
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.

Cochrane Database Syst Rev. 2008-7-16

[9]
The educational effects of portfolios on undergraduate student learning: a Best Evidence Medical Education (BEME) systematic review. BEME Guide No. 11.

Med Teach. 2009-4

[10]
Comparison of cellulose, modified cellulose and synthetic membranes in the haemodialysis of patients with end-stage renal disease.

Cochrane Database Syst Rev. 2001

引用本文的文献

[1]
Harnessing biomarkers to guide immunotherapy in esophageal cancer: toward precision oncology.

Clin Transl Oncol. 2025-9-6

[2]
Development of a Machine Learning Model Integrating Pathomics and Clinical Data to Predict Axillary Lymph Node Metastasis in Breast Cancer: A Two-Center Study.

Cancer Rep (Hoboken). 2025-9

[3]
2.5D Deep Learning and Machine Learning for Discriminative DLBCL and IDC with Radiomics on PET/CT.

Bioengineering (Basel). 2025-8-12

[4]
Artificial Intelligence-Based Multimodal Prediction of Postoperative Adjuvant Immunotherapy Benefit in Urothelial Carcinoma: Results From the Phase III, Multicenter, Randomized, IMvigor010 Trial.

MedComm (2020). 2025-8-25

[5]
Role of Immunotherapy in Ovarian Cancer: Advances, Challenges, and Future Perspectives.

Cancer Treat Res. 2025

[6]
Artificial Intelligence and Machine Learning Approaches in Designing Immunotherapy in Cancer.

Cancer Treat Res. 2025

[7]
Immune-related adverse events of neoadjuvant immunotherapy in patients with perioperative cancer: a machine-learning-driven, decade-long informatics investigation.

J Immunother Cancer. 2025-8-21

[8]
Emerging biomarkers for early cancer detection and diagnosis: challenges, innovations, and clinical perspectives.

Eur J Med Res. 2025-8-18

[9]
Systemic immune-inflammatory biomarkers combined with the CRP-albumin-lymphocyte index predict surgical site infection following posterior lumbar spinal fusion: a retrospective study using machine learning.

Front Med (Lausanne). 2025-7-30

[10]
Proteomic insights into the biology of dopaminergic neurons.

Front Mol Neurosci. 2025-7-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索