Suppr超能文献

从检测机器人的角度来看,YOLOv8-MCDE用于在复杂背景下对小型器械进行轻量级检测。

YOLOv8-MCDE for lightweight detection of small instruments in complex backgrounds from inspection robots' perspective.

作者信息

Yang Tongxin, Ling Ding, Shi Qingwu, Jiang Tianyue

机构信息

School of Information and Electronic Technology, Jiamusi University, No. 148 Xueyuan Street, 154007, Jiamusi, Heilongjiang, China.

出版信息

Sci Rep. 2025 Sep 1;15(1):32060. doi: 10.1038/s41598-025-17186-9.

Abstract

This paper addresses the challenges of equipment inspection in complex substation environments by proposing a lightweight small object detection algorithm, YOLOv8-MCDE, specifically designed for instrument recognition and suitable for deployment on inspection robots. Through model structure optimization, the proposed method significantly enhances both the small object detection performance and real-time efficiency of instrument detection on edge computing devices. YOLOv8-MCDE adopts the lightweight MobileNetV3 architecture as its backbone, effectively reducing model complexity and improving operational efficiency. The neck integrates a CNN-based Cross-scale Feature Fusion (CCFF) algorithm, which further lowers computational overhead while enhancing detection capability for small objects. In addition, a Deformable Large Kernel Attention (D-LKA) mechanism is integrated to increase the model's sensitivity to small objects within complex backgrounds. The conventional CIOU loss function is also replaced with the more efficient EIOU loss function, significantly improving bounding box localization accuracy and accelerating model convergence. Experimental results demonstrate that YOLOv8-MCDE achieves a Precision of 92.80% and an mAP50 of 91.36%, representing improvements of 2.38% and 1.27%, respectively, compared to the original YOLOv8. Furthermore, the proposed algorithm reduces FLOPs by 37.68% and model size by 36%. These enhancements substantially reduce computational resource demands while significantly improving the real-time detection capabilities and small object recognition performance of inspection robots operating in complex environments.

摘要

本文提出了一种轻量级小目标检测算法YOLOv8-MCDE,专门用于仪器识别,适用于在巡检机器人上部署,以应对复杂变电站环境中的设备巡检挑战。通过模型结构优化,该方法显著提高了边缘计算设备上小目标检测性能和仪器检测的实时效率。YOLOv8-MCDE采用轻量级的MobileNetV3架构作为其主干,有效降低了模型复杂度,提高了运行效率。颈部集成了基于卷积神经网络的跨尺度特征融合(CCFF)算法,在增强小目标检测能力的同时进一步降低了计算开销。此外,还集成了可变形大核注意力(D-LKA)机制,以提高模型对复杂背景下小目标的敏感度。传统的CIOU损失函数也被更高效的EIOU损失函数所取代,显著提高了边界框定位精度,加速了模型收敛。实验结果表明,YOLOv8-MCDE的精度达到92.80%,mAP50为91.36%,与原始的YOLOv8相比,分别提高了2.38%和1.27%。此外,该算法的FLOPs减少了37.68% , 模型大小减少了36%。这些改进大大降低了计算资源需求,同时显著提高了在复杂环境中运行的巡检机器人的实时检测能力和小目标识别性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c552/12402103/92e8a08335f8/41598_2025_17186_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验