YOLOv8-Scm:一种用于复杂自然场景中柑橘类水果晒伤识别与分类的改进模型。
YOLOv8-Scm: an improved model for citrus fruit sunburn identification and classification in complex natural scenes.
作者信息
Cong Guoxun, Chen Xinghong, Bing Zongyu, Liu Wenhuan, Chen Xiangling, Wu Qun, Guo Zheng, Zheng Yongqiang
机构信息
National Digital Planting (Citrus) Innovation Sub-Center, National Engineering Research Center for Citrus Technology, Citrus Research Institute, Southwest University, Chongqing, China.
Citrus Research Institute, Southwest University, Chongqing, China.
出版信息
Front Plant Sci. 2025 Jul 7;16:1591989. doi: 10.3389/fpls.2025.1591989. eCollection 2025.
Citrus ranks among the most widely cultivated and economically vital fruit crops globally, with southern China being a major production area. In recent years, global warming has intensified extreme weather events, such as prolonged high temperature and strong solar radiation, posing increasing risks to citrus production,leading to significant economic losses. Existing identification methods struggle with accuracy and generalization in complex environments, limiting their real-time application. This study presents an improved, lightweight citrus sunburn recognition model, YOLOv8-Scm, based on the YOLOv8n architecture. Three key enhancements are introduced: (1) DSConv module replaces the standard convolution for a more efficient and lightweight design, (2) Global Attention Mechanism (GAM) improves feature extraction for multi-scale and occluded targets, and (3) EIoU loss function enhances detection precision and generalization. The YOLOv8-Scm model achieves improvements of 2.0% in mAP50 and 1.5% in Precision over the original YOLOv8n, with only a slight increase in computational parameters (0.182M). The model's Recall rate decreases minimally by 0.01%. Compared to other models like SSD, Faster R-CNN, YOLOv5n, YOLOv7-tiny, YOLOv8n, and YOLOv10n, YOLOv8-Scm outperforms in mAP50, Precision, and Recall, and is significantly more efficient in terms of computational parameters. Specifically, the model achieves a mAP50 of 92.7%, a Precision of 86.6%, and a Recall of 87.2%. These results validate the model's superior capability in accurately detecting citrus sunburn across diverse and challenging natural scenarios. YOLOv8-Scm enables accurate, real-time citrus sunburn monitoring, providing strong technical support for smart orchard management and practical deployment.
柑橘是全球种植最广泛、经济上最重要的水果作物之一,中国南方是主要产区。近年来,全球变暖加剧了极端天气事件,如长时间高温和强烈太阳辐射,给柑橘生产带来越来越大的风险,导致重大经济损失。现有的识别方法在复杂环境中的准确性和通用性方面存在困难,限制了它们的实时应用。本研究基于YOLOv8n架构提出了一种改进的轻量级柑橘日灼识别模型YOLOv8-Scm。引入了三项关键改进:(1)DSConv模块取代标准卷积,实现更高效、轻量级的设计;(2)全局注意力机制(GAM)改进了对多尺度和遮挡目标的特征提取;(3)EIoU损失函数提高了检测精度和通用性。YOLOv8-Scm模型在mAP50上比原始YOLOv8n提高了2.0%,在Precision上提高了1.5%,而计算参数仅略有增加(0.182M)。该模型的召回率最低仅下降了0.01%。与SSD、Faster R-CNN、YOLOv5n、YOLOv7-tiny、YOLOv8n和YOLOv10n等其他模型相比,YOLOv8-Scm在mAP50、Precision和Recall方面表现更优,在计算参数方面效率显著更高。具体而言,该模型的mAP50为92.7%,Precision为86.6%,Recall为87.2%。这些结果验证了该模型在各种具有挑战性的自然场景中准确检测柑橘日灼的卓越能力。YOLOv8-Scm能够实现准确、实时的柑橘日灼监测,为智能果园管理和实际部署提供有力的技术支持。
相似文献
Pest Manag Sci. 2025-8
Front Plant Sci. 2025-6-24
Am J Transl Res. 2025-5-15
Sensors (Basel). 2025-6-21
PeerJ Comput Sci. 2025-4-15
本文引用的文献
Plant Biol (Stuttg). 2024-6
Sensors (Basel). 2022-1-12
IEEE Trans Pattern Anal Mach Intell. 2016-6-6