Suppr超能文献

用于户外无线光通信系统的卷积神经网络-长短期记忆网络-注意力机制方法

CNN-LSTM-AM approach for outdoor wireless optical communication systems.

作者信息

Abdelsattar Montaser, Amer Eman S, Ziedan Hamdy A, Salama Wessam M

机构信息

Electrical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt.

Faculty of Industrial and Energy Technology, Borg Al Arab Technological University, Alexandria, Egypt.

出版信息

Sci Rep. 2025 Sep 1;15(1):32178. doi: 10.1038/s41598-025-16828-2.

Abstract

This paper introduces the enhancement of Visible Light Communications (VLC) for V2V using artificial intelligence models. Different V2V scenarios are simulated. The first scenario considers a specific longitudinal separation and a variable lateral shift between vehicles. The second scenario assumes random longitudinal separation and a specific lateral shift between vehicles. Significant obstacles that impair performance and dependability in V2V communication systems include bit errors, high power consumption, and interference. By combining Convolutional Neural Networks (CNNs), Generative Adversarial Network (GAN), Gated Recurrent Unit (GRU), and Deep Denoising Autoencoder (DDAE), this paper suggests a deep learning-based system to address these issues. The framework comprises four modules, a power reduction module that uses a GAN to generate low-power signals while maintaining signal quality; a performance enhancement module that uses GRU, a Bit Error Rate (BER) reduction module that uses a DDAE to denoise the received signal and minimize errors; and an interference cancellation module that uses a CNN-based U-Net to separate the desired signal from interference. It is shown that the suggested model significantly improves throughput, power efficiency, BER reduction, and interference cancellation. In dynamic and noisy contexts, our study offers a reliable and scalable way to improve the performance and dependability of V2V communication systems. The CNN-U-Net-GAN-GRU-DDAE model outperforms other models, including CNN-U-Net, CNN-U-Net-GAN, and CNN-U-Net-GAN-GRU, achieving the best results by an average percentage 13.6%, 14.4% and 4.2% respectively. By comparing this work with previous works, we deduce that the improving average percentage for our work by 31.7%.

摘要

本文介绍了利用人工智能模型增强车对车(V2V)可见光通信。模拟了不同的V2V场景。第一种场景考虑车辆之间特定的纵向间距和可变的横向偏移。第二种场景假设车辆之间的纵向间距随机且横向偏移特定。在V2V通信系统中,影响性能和可靠性的重大障碍包括误码、高功耗和干扰。通过结合卷积神经网络(CNN)、生成对抗网络(GAN)、门控循环单元(GRU)和深度去噪自动编码器(DDAE),本文提出了一种基于深度学习的系统来解决这些问题。该框架包括四个模块,一个功率降低模块,使用GAN生成低功率信号同时保持信号质量;一个性能增强模块,使用GRU;一个误码率(BER)降低模块,使用DDAE对接收到的信号进行去噪并最小化错误;以及一个干扰消除模块,使用基于CNN的U-Net从干扰中分离出所需信号。结果表明,所提出的模型显著提高了吞吐量、功率效率、误码率降低和干扰消除能力。在动态和嘈杂环境中,我们的研究提供了一种可靠且可扩展的方法来提高V2V通信系统的性能和可靠性。CNN-U-Net-GAN-GRU-DDAE模型优于其他模型,包括CNN-U-Net、CNN-U-Net-GAN和CNN-U-Net-GAN-GRU,平均百分比分别比它们高出13.6%、14.4%和4.2%。通过将这项工作与先前的工作进行比较,我们推断出我们工作的平均提升百分比为31.7%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6837/12402139/99b4ecb4725b/41598_2025_16828_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验