Shi Zhi-Feng, Yu Zhe-Xiang, Gu Ling-Han, Ma Zhi-Xue, Chen Qin-Bo, Wen Li-Bin, Waddington John L, Zhen Xue-Chu
Jiangsu Key Laboratory of Drug Discovery and Translational Research for Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
Acta Pharmacol Sin. 2025 Sep 1. doi: 10.1038/s41401-025-01641-4.
Mitochondria are not only the most important organelles in eukaryotic cells that participate in energy metabolism, signal transduction, cell apoptosis and other physiological processes, but also essential regulators of neurodevelopment, neuroplasticity, survival and adult neurogenesis. The mitochondria-localized hydroxylase Clk-1 is involved in ubiquinone biosynthesis. Recent evidence shows that Clk1 mutant mice are resistant to morphine- and methamphetamine-induced conditioned place preference. Given the critical role of learning and memory in drug dependence, we herein explored whether and how Clk1 deficiency affected the cognitive processes in mice. We found that mutant Clk1 mice (Clk1) exhibited recognition memory impairment in novel object recognition (NOR) and novel arm recognition (NAR) tests. In addition, we observed in Clk1 mutant mice a selective reduction in dendritic spine density in prefrontal cortex (PFC) but not in the hippocampus (HIP). The expression of brain-derived neurotrophic factor (BDNF) was also decreased in PFC but not in HIP. Furthermore, Clk1 mutant mice displayed impairment in the ERK/CREB signaling pathway in PFC that might underlie Clk1 mutation-induced changes in BDNF and dendritic morphology. Administration of antipsychotic drugs aripiprazole (0.3 mg·kg·d, i.p.) or risperidone (1 mg·kg·d, i.p.) for 7 days fully rescued Clk1 mutation-induced recognition memory deficits. This study provides primary evidence highlighting the role of mitochondrial Clk1 in the regulation of recognition memory and presents an informative model for investigating mitochondrial function in learning and memory.
线粒体不仅是真核细胞中参与能量代谢、信号转导、细胞凋亡等生理过程的最重要细胞器,也是神经发育、神经可塑性、存活及成体神经发生的关键调节因子。线粒体定位的羟化酶Clk-1参与泛醌生物合成。最近的证据表明,Clk1突变小鼠对吗啡和甲基苯丙胺诱导的条件性位置偏爱具有抗性。鉴于学习和记忆在药物依赖中的关键作用,我们在此探究了Clk1缺陷是否以及如何影响小鼠的认知过程。我们发现,突变型Clk1小鼠(Clk1)在新物体识别(NOR)和新臂识别(NAR)测试中表现出识别记忆障碍。此外,我们观察到Clk1突变小鼠前额叶皮质(PFC)的树突棘密度选择性降低,而海马体(HIP)则未出现这种情况。脑源性神经营养因子(BDNF)的表达在PFC中也降低,但在HIP中未降低。此外,Clk1突变小鼠在PFC中的ERK/CREB信号通路受损,这可能是Clk1突变诱导的BDNF和树突形态变化的基础。给予抗精神病药物阿立哌唑(0.3 mg·kg·d,腹腔注射)或利培酮(1 mg·kg·d,腹腔注射)7天可完全挽救Clk1突变诱导的识别记忆缺陷。本研究提供了初步证据,突出了线粒体Clk1在调节识别记忆中的作用,并为研究学习和记忆中的线粒体功能提供了一个信息丰富的模型。