Volonté Mariano, Traverso Lucila, Sierra Ivana, Aptekmann Ariel A, Nadra Alejandro D, Ons Sheila
Laboratorio de Neurobiología de Insectos, Centro Regional de Estudios Genómicos, Centro de Endocrinología Experimental y Aplicada, Facultad de Ciencias Exactas-Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas. La Plata, Buenos Aires, Argentina.
Instituto de Biociencias, Biotecnología y Biología Traslacional, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
BMC Genomics. 2025 Sep 1;26(1):794. doi: 10.1186/s12864-025-11967-2.
BACKGROUND: Plasticity in sensory perception and tolerance to xenobiotics contributes to insects' adaptive capacity and evolutionary success, by enabling them to cope with potentially toxic molecules from the environment or internal milieu. Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) have traditionally been studied in the context of chemoreception. However, accumulating evidence over the past few years indicates that these protein families can also sequester insecticide molecules. In doing so, the insecticide cannot reach its target site and can be more easily eliminated through the feces, complexed with these proteins. Thus, xenobiotic sequestration by OBPs and CSPs may lead to insecticide tolerance or even resistance. In the Southern Cone, the kissing bug Triatoma infestans is the main vector of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. Vectorial transmission of T. cruzi has not been interrupted in certain regions of Argentina, where several populations of T. infestans highly resistant to insecticides have been reported. Understanding the molecular mechanisms underlying resistance is crucial for designing effective vector control strategies. In this context, studying protein families involved in insecticide sequestration is essential. RESULTS: We manually corrected predicted gene models and identified new sequences of chemosensory and odorant-binding proteins in five Hemiptera species with different feeding habits. Using this information, we mined the raw genome sequence of T. infestans to identify and characterize their orthologs based on sequence conservation and phylogenetic relationships. In total, 26 chemosensory and 49 odorant-binding proteins were identified in the T. infestans genome. Phylogenetic analysis, tissue-specific expression, and molecular docking with major insecticides were performed to assess possible roles. CONCLUSIONS: This work represents the first comprehensive genomic analysis of chemosensory and odorant-binding protein families across Hemiptera species, as well as the first characterization of these gene families in T. infestans using genomic data. It contributes to a better understanding of the molecular basis of chemoreception and insecticide resistance in T. infestans.
背景:感官感知的可塑性以及对外源化合物的耐受性有助于昆虫的适应能力和进化成功,使它们能够应对来自环境或内部环境的潜在有毒分子。气味结合蛋白(OBP)和化学感受蛋白(CSP)传统上是在化学感受的背景下进行研究的。然而,过去几年积累的证据表明,这些蛋白家族也可以螯合杀虫剂分子。这样一来,杀虫剂就无法到达其靶位点,并且可以更容易地通过粪便与这些蛋白结合而被清除。因此,OBP和CSP对外源化合物的螯合可能导致对杀虫剂的耐受性甚至抗性。在南美洲南部,锥蝽(Triatoma infestans)是克氏锥虫(Trypanosoma cruzi)的主要传播媒介,克氏锥虫是一种导致恰加斯病的原生动物寄生虫。在阿根廷的某些地区,克氏锥虫的媒介传播尚未被阻断,在这些地区已报告了几个对杀虫剂高度抗性的锥蝽种群。了解抗性背后的分子机制对于设计有效的媒介控制策略至关重要。在这种情况下,研究参与杀虫剂螯合的蛋白家族至关重要。 结果:我们手动校正了预测的基因模型,并在具有不同取食习性的五种半翅目物种中鉴定了化学感受蛋白和气味结合蛋白的新序列。利用这些信息,我们挖掘了锥蝽的原始基因组序列,以基于序列保守性和系统发育关系鉴定并表征它们的直系同源物。在锥蝽基因组中总共鉴定出26种化学感受蛋白和49种气味结合蛋白。进行了系统发育分析、组织特异性表达分析以及与主要杀虫剂的分子对接,以评估其可能的作用。 结论:这项工作代表了对半翅目物种化学感受蛋白和气味结合蛋白家族的首次全面基因组分析,也是首次利用基因组数据对锥蝽中的这些基因家族进行表征。它有助于更好地理解锥蝽化学感受和杀虫剂抗性的分子基础。
2025-1
PLoS Negl Trop Dis. 2016-10-28
Cochrane Database Syst Rev. 2022-1-17
Psychopharmacol Bull. 2024-7-8
Cochrane Database Syst Rev. 2008-7-16
Cochrane Database Syst Rev. 2021-4-19
Lancet Reg Health Am. 2024-9-13
J Agric Food Chem. 2024-9-11
Front Insect Sci. 2023-10-6
Front Insect Sci. 2022-6-15
Wellcome Open Res. 2024-3-26