Suppr超能文献

通过铁配位共价有机框架进行阴极设计以促进四电子转移实现高容量水系锌碘电池

Cathode Design via Iron-Coordinated Covalent Organic Frameworks Facilitating Four-Electron Transfer to Achieve High-Capacity Aqueous zinc-iodine Batteries.

作者信息

Guo Songde, Hu Sanlue, Li Senlin, Wang Dun, Zhang Siqi, Luo Lianwei, Hong Guo, Yao Yagang, Han Cuiping

机构信息

Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, China.

Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

出版信息

ACS Nano. 2025 Sep 16;19(36):32533-32545. doi: 10.1021/acsnano.5c09635. Epub 2025 Sep 2.

Abstract

The variable valence states of iodine(I) render Zn-I batteries an intriguing area of research. However, current Zn-I batteries are mostly based on I/I redox chemistry. Effective strategies for activating the high-voltage I/I redox couple in iodine-based cathode materials remain relatively scarce. Herein, an iron (Fe)-coordinated porphyrin bipyridine covalent organic framework (PPBY-Fe-COF) is designed as a host material featuring Fe and conjugated C═N active sites to enable consecutive I/I/I redox chemistry. I migrate to cationic Fe sites for oxidation to I, followed by its immobilization on anionic C═N groups. Assisted by OTF, the formation of N-I-O bonds suppresses the I hydrolysis tendency, enabling reversible redox reactions. Consequently, the four-electron transfer Zn||I@PPBY-Fe-COF battery exhibited a specific capacity of 240 mAh g (based on iodine loading) at 1 A g and a capacity retention of 90.9% after 8000 cycles. This work presents an effective methodology for developing high-energy-density aqueous Zn-I battery systems.

摘要

碘(I)的可变价态使锌碘电池成为一个引人入胜的研究领域。然而,目前的锌碘电池大多基于I/I氧化还原化学。在碘基阴极材料中激活高压I/I氧化还原对的有效策略仍然相对较少。在此,设计了一种铁(Fe)配位的卟啉联吡啶共价有机框架(PPBY-Fe-COF)作为主体材料,其具有Fe和共轭C═N活性位点,以实现连续的I/I/I氧化还原化学。I迁移到阳离子Fe位点被氧化为I,随后固定在阴离子C═N基团上。在有机正离子电解质(OTF)的辅助下,N-I-O键的形成抑制了I的水解趋势,实现了可逆的氧化还原反应。因此,四电子转移的Zn||I@PPBY-Fe-COF电池在1 A g下表现出240 mAh g的比容量(基于碘负载量),在8000次循环后容量保持率为90.9%。这项工作为开发高能量密度水系锌碘电池系统提供了一种有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验