Bi Xiaoyu, Yu Ao, Zhang Jing, Yu Jing, Li Canhuang, Ren Yuchuan, Lin Kaifu, Chai Jiali, Xue Qian, Xie Yanting, Cheng Yapeng, Chang Xingqi, Lu Xuan, Yang Linlin, He Ren, Zeng Guifang, Huang Chen, Qi Xuede, Qi Xueqiang, Zhang Chaoqi, Arbiol Jordi, Jacob Timo, Cabot Andreu
Catalonia Institute for Energy Research - IREC Sant Adrià de Besòs, Barcelona 08930, Catalonia, Spain.
Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain.
ACS Nano. 2025 Jul 15;19(27):25438-25454. doi: 10.1021/acsnano.5c07460. Epub 2025 Jun 29.
Aqueous zinc-iodine (Zn-I) batteries have attracted considerable attention due to their abundant resources, high safety, and environmental friendliness. However, challenges inherent to conversion-type electrodes, including severe active material shuttling and suboptimal Coulombic efficiency, continue to limit their performance. Here, we present a high-performance Zn-I battery enabled by calcium-ion-preintercalated VO (CaVO) nanobelts as a cathode additive. By harnessing the synergistic effects of physical trapping (via activated carbon and interlayer confinement in CaVO) and chemical adsorption (through Ca binding sites), the hybrid host framework achieves superior immobilization of iodine species while simultaneously shortening Zn diffusion pathways, thereby facilitating efficient I/I redox kinetics. Furthermore, Ca-induced crystal structure modification enhances the Zn transport and provides additional capacity contributions. As a result, Zn-I cells employing I-loaded CaVO (CaVO/AC@I) composite cathodes deliver a high specific capacity of 244 mAh g at 0.2 A g, outstanding rate performance with 78.5% capacity retention at 5 A g, and an impressive energy density of 279 Wh kg, based on the combined mass of I and CaVO. This work presents a hybrid energy storage strategy for Zn-I systems, providing a feasible approach for the development of next-generation high-performance aqueous batteries.
水系锌碘(Zn-I)电池因其资源丰富、安全性高和环境友好性而备受关注。然而,转换型电极固有的挑战,包括严重的活性物质穿梭和次优的库仑效率,仍然限制着它们的性能。在此,我们展示了一种高性能的Zn-I电池,它采用钙离子预嵌入的VO(CaVO)纳米带作为阴极添加剂。通过利用物理捕获(通过活性炭和CaVO中的层间限制)和化学吸附(通过Ca结合位点)的协同效应,这种混合主体框架实现了碘物种的卓越固定,同时缩短了锌的扩散路径,从而促进了高效的I/I氧化还原动力学。此外,Ca诱导的晶体结构改性增强了锌的传输并提供了额外的容量贡献。结果,采用负载I的CaVO(CaVO/AC@I)复合阴极的Zn-I电池在0.2 A g下具有244 mAh g的高比容量,在5 A g下具有78.5%的容量保持率的出色倍率性能,以及基于I和CaVO的总质量的279 Wh kg的令人印象深刻的能量密度。这项工作为Zn-I系统提出了一种混合储能策略,为下一代高性能水系电池的开发提供了一种可行的方法。