Siddik Abu Bakar, Song Wenya, Georgitzikis Epimitheas, Vildanova Marina, Jin Minhyun, Berghmans Francois, Lieberman Itai, Malinowski Pawel E, Conard Thierry, Cheyns David, Heremans Paul
IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
Department of Electrical Engineering ESAT, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium.
ACS Nano. 2025 Sep 16;19(36):32780-32787. doi: 10.1021/acsnano.5c11108. Epub 2025 Sep 2.
Heavy-metal-free III-V semiconductor-based colloidal quantum dots (CQDs), such as InAs, are promising candidates for near- and short-wave infrared detection. However, up-to-date research efforts remain mainly limited to wavelengths below 1100 nm due to challenges in synthesis, junction formation, and passivation for large diameter InAs quantum dots. Systematic investigations into device design, reverse dark current mechanisms, and trap distributions in larger InAs quantum dots remain limited. Here, we report a thin-film PIN heterojunction colloidal InAs (1200 nm) photodiode stack with amorphous indium gallium zinc oxide and copper(I) iodide transport layers. To the best of our knowledge, the device exhibits one of the lowest reported dark current densities of 4.7 μA/cm at -1 V and 298 K, which decreases to 3.6 nA/cm at 220 K. Temperature-dependent current-voltage characteristics and activation energy analysis confirm thermally driven dark current increasing with applied field. Impedance spectroscopy reveals the dominant deep trap states within the InAs CQD layer, being tail states of the conduction band that reach down to ∼0.4 eV below the band edge, with a density of ∼2 × 10 cm. The temperature-induced increase in carrier density and reduction in built-in potential within the depleted InAs layer reflect trap filling and Fermi level pinning in the N and P layers. The trapping-detrapping induced noise reduces the specific detectivity (*) at -1 V by 1.97 orders at 1 Hz and by 1.52 orders of magnitude at 10 Hz relative to the shot-noise-limited baseline. At frequencies ∼ ≥500 Hz the * approaches the calculated limit of 2.5 × 10 Jones. Finally, we demonstrate infrared imaging by monolithically integrating the photodiode with a Si read-out IC, enabling imaging beyond the spectral range of CMOS sensors.
基于III-V族半导体的无重金属胶体量子点(CQD),如砷化铟,是近红外和短波红外探测的有前途的候选材料。然而,由于大直径砷化铟量子点在合成、结形成和钝化方面存在挑战,目前的研究主要限于波长低于1100nm的范围。对较大尺寸砷化铟量子点的器件设计、反向暗电流机制和陷阱分布的系统研究仍然有限。在此,我们报道了一种具有非晶铟镓锌氧化物和碘化亚铜传输层的薄膜PIN异质结胶体砷化铟(1200nm)光电二极管堆栈。据我们所知,该器件在-1V和298K时表现出报道的最低暗电流密度之一,为4.7μA/cm²,在220K时降至3.6nA/cm²。温度依赖的电流-电压特性和激活能分析证实,热驱动的暗电流随外加电场增加。阻抗谱揭示了砷化铟CQD层内占主导地位的深陷阱态,即导带的尾态,其延伸至带边以下约0.4eV,密度约为2×10¹⁷cm⁻³。耗尽的砷化铟层内温度诱导的载流子密度增加和内建电势降低反映了N层和P层中的陷阱填充和费米能级钉扎。与散粒噪声限制基线相比,陷阱俘获-脱俘获诱导的噪声在1Hz时使-1V下的比探测率(D*)降低1.97个数量级,在10Hz时降低1.52个数量级。在频率≥500Hz时,D*接近计算极限2.5×10¹¹Jones。最后,我们通过将光电二极管与硅读出集成电路单片集成来演示红外成像,实现了超越CMOS传感器光谱范围的成像。