Thompson Henry J, Bonanomi Matteo, Pedersen Jacob, Plekan Oksana, Pal Nitish, Grazioli Cesare, Prince Kevin C, Tenorio Bruno N C, Devetta Michele, Faccialà Davide, Vozzi Caterina, Piseri Paolo, Danailov Miltcho B, Demidovich Alexander, Brynes Alexander D, Simoncig Alberto, Zangrando Marco, Coreno Marcello, Feifel Raimund, Squibb Richard J, Holland David M P, Allum Felix, Rolles Daniel, Decleva Piero, Schuurman Michael S, Forbes Ruaridh, Coriani Sonia, Callegari Carlo, Minns Russell S, Di Fraia Michele
School of Chemistry and Chemical Engineering, University of Southampton, Southampton SO171BJ, U.K.
Dipartimento di Fisica, Politecnico di Milano, Milano 20133, Italy.
J Am Chem Soc. 2025 Sep 10;147(36):32851-32860. doi: 10.1021/jacs.5c09162. Epub 2025 Sep 2.
Tracking the multifarious ultrafast electronic and structural changes occurring in a molecule during a photochemical transformation is a challenging endeavor that benefits from recent experimental and computational progress in time-resolved techniques. Measurements of valence electronic states, which provide a global picture of the bonding structure of the molecule, and core electronic states, which provide insight into the local environment, traditionally require different approaches and are often studied separately. Here, we demonstrate that X-ray pulses from a seeded free-electron laser (FEL) enable the measurement of high-resolution, time-resolved X-ray photoelectron spectra (XPS) that capture weak satellite states resulting from shake-down processes in a valence-excited molecule. This approach effectively combines the advantages of both valence- and core-state investigations. We applied this method to investigate photoexcited CS molecules, where the role of internal conversion (IC) and intersystem crossing (ISC) in determining the predissociation dynamics is controversial. We present XPS spectra from photoexcited CS, obtained at the FERMI FEL. High-resolution measurements, compared to the corresponding spectra obtained from accurate multireference quantum chemical calculations, reveal that shake-down satellite channels are highly sensitive to both valence electronic and geometric changes. Previous studies of the predissociation dynamics have led to uncertain assignments of the branching between singlet and triplet excited states. We derive a propensity rule that demonstrates the spin-selectivity of the shake-downs. This selectivity allows us to unequivocally assign contributions from the bright and dark singlet excited states, with populations tracked along the predissociation dynamic pathway.
追踪分子在光化学转变过程中发生的各种超快电子和结构变化是一项具有挑战性的工作,受益于时间分辨技术最近在实验和计算方面取得的进展。价电子态的测量提供了分子键合结构的全局图像,而芯电子态的测量则有助于深入了解局部环境,传统上这需要不同的方法,且通常是分开研究的。在这里,我们证明来自种子自由电子激光(FEL)的X射线脉冲能够测量高分辨率、时间分辨的X射线光电子能谱(XPS),该能谱捕获了价激发分子中弛豫过程产生的弱卫星态。这种方法有效地结合了价态和芯态研究的优点。我们应用这种方法来研究光激发的CS分子,其中内转换(IC)和系间窜越(ISC)在决定预解离动力学中的作用存在争议。我们展示了在费米自由电子激光装置上获得的光激发CS的XPS能谱。与通过精确的多参考量子化学计算得到的相应能谱相比,高分辨率测量结果表明,弛豫卫星通道对价电子和几何结构变化都高度敏感。先前对预解离动力学的研究导致了单重态和三重态激发态之间分支的不确定归属。我们推导了一个倾向规则,该规则证明了弛豫过程的自旋选择性。这种选择性使我们能够明确地确定明亮和暗单重态激发态的贡献,并追踪预解离动力学路径上的粒子数。