Suppr超能文献

深度学习在1.5T常规二维T2 FLEX脊柱成像中的应用与评估

Application and assessment of deep learning to routine 2D T2 FLEX spine imaging at 1.5T.

作者信息

Shaikh Ibraheem S, Milshteyn Eugene, Chulsky Semyon, Maclellan Christopher J, Soman Salil

机构信息

Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.

GE HealthCare, Boston, USA.

出版信息

Eur Spine J. 2025 Sep 2. doi: 10.1007/s00586-025-09305-x.

Abstract

PURPOSE

2D T2 FSE is an essential routine spine MRI sequence, allowing assessment of fractures, soft tissues, and pathology. Fat suppression using a DIXON-type approach (2D FLEX) improves water/fat separation. Recently, a deep learning (DL) reconstruction (AIR™ Recon DL, GE HealthCare) became available for 2D FLEX, offering increased signal-to-noise ratio (SNR), reduced artifacts, and sharper images. This study aimed to compare DL-reconstructed versus non-DL-reconstructed spine 2D T2 FLEX images for diagnostic image quality and quantitative metrics at 1.5T.

METHODS

Forty-one patients with clinically indicated cervical or lumbar spine MRI were scanned between May and August 2023 on a 1.5T Voyager (GE HealthCare). A 2D T2 FLEX sequence was acquired, and DL-based reconstruction (noise reduction strength: 75%) was applied. Raw data were also reconstructed without DL. Three readers (CAQ-neuroradiologist, PGY-6 neuroradiology fellow, PGY-2 radiology resident) rated diagnostic preference (0 = non-DL, 1 = DL, 2 = equivalent) for 39 cases. Quantitative measures (SNR, total variation [TV], number of edges, and fat fraction [FF]) were compared using paired t-tests with significance set at p < .05.

RESULTS

Among evaluations, 79.5% preferred DL, 11% found images equivalent, and 9.4% favored non-DL, with strong inter-rater agreement (p < .001, Fleiss' Kappa = 0.99). DL images had higher SNR, lower TV, and fewer edges (p < .001), indicating effective noise reduction. FF remained statistically unchanged in subcutaneous fat (p = .25) but differed slightly in vertebral bodies (1.4% difference, p = .01).

CONCLUSION

DL reconstruction notably improved image quality by enhancing SNR and reducing noise without clinically meaningful changes in fat quantification. These findings support the use of DL-enhanced 2D T2 FLEX in routine spine imaging at 1.5T. Incorporating DL-based reconstruction into standard spine MRI protocols can increase diagnostic confidence and workflow efficiency. Further studies with larger cohorts and diverse pathologies are warranted to refine this approach and explore potential benefits for clinical decision-making.

摘要

目的

二维T2快速自旋回波序列(2D T2 FSE)是脊柱MRI的一项基本常规序列,可用于评估骨折、软组织及病变情况。采用狄克逊(DIXON)型方法(二维灵活水脂分离序列,2D FLEX)进行脂肪抑制可改善水脂分离效果。最近,一种深度学习(DL)重建技术(AIR™ Recon DL,通用电气医疗集团)可用于二维灵活水脂分离序列,能提高信噪比(SNR)、减少伪影并使图像更清晰。本研究旨在比较在1.5T场强下,经深度学习重建与未经深度学习重建的脊柱二维T2 FLEX图像的诊断图像质量和定量指标。

方法

2023年5月至8月期间,对41例有临床指征需进行颈椎或腰椎MRI检查的患者,使用1.5T Voyager磁共振成像仪(通用电气医疗集团)进行扫描。采集二维T2 FLEX序列图像,并应用基于深度学习的重建技术(降噪强度:75%)。同时,对原始数据也进行未使用深度学习技术的重建。三位阅片者(获得认证的神经放射科医生、六年级神经放射科住院医师、二年级放射科住院医师)对39例病例的诊断偏好进行评分(0 = 未使用深度学习技术,1 = 使用深度学习技术,2 = 等效)。使用配对t检验比较定量指标(信噪比、总变差[TV]、边缘数量和脂肪分数[FF]),显著性水平设定为p < 0.05。

结果

在评估中,79.5%的阅片者更倾向于使用深度学习技术重建的图像,11%的阅片者认为两种图像等效,9.4%的阅片者更青睐未使用深度学习技术重建的图像,阅片者之间的一致性很强(p < 0.001,Fleiss卡方值 = 0.99)。使用深度学习技术重建的图像具有更高的信噪比、更低的总变差和更少的边缘(p < 0.001),表明有效降低了噪声。皮下脂肪中的脂肪分数在统计学上保持不变(p = 0.25),但在椎体中略有差异(相差1.4%,p = 0.01)。

结论

深度学习重建技术通过提高信噪比和减少噪声显著改善了图像质量,同时在脂肪定量方面没有临床意义上的显著变化。这些研究结果支持在1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验