Suppr超能文献

LAVA HyperSense 与深度学习重建在克罗恩病患者近各向同性(3D)增强磁共振肠道成像中的应用:在降低噪声和提高图像质量方面的效用。

LAVA HyperSense and deep-learning reconstruction for near-isotropic (3D) enhanced magnetic resonance enterography in patients with Crohn's disease: utility in noise reduction and image quality improvement.

机构信息

Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Republic of Korea.

GE Healthcare Korea, Seoul, Republic of Korea.

出版信息

Diagn Interv Radiol. 2023 May 31;29(3):437-449. doi: 10.4274/dir.2023.232113. Epub 2023 Apr 25.

Abstract

PURPOSE

This study aimed to compare near-isotropic contrast-enhanced T1-weighted (CE-T1W) magnetic resonance enterography (MRE) images reconstructed with vendor-supplied deep-learning reconstruction (DLR) with those reconstructed conventionally in terms of image quality.

METHODS

A total of 35 patients who underwent MRE for Crohn's disease between August 2021 and February 2022 were included in this retrospective study. The enteric phase CE-T1W MRE images of each patient were reconstructed with conventional reconstruction and no image filter (original), with conventional reconstruction and image filter (filtered), and with a prototype version of AIR Recon DL 3D (DLR), which were then reformatted into the axial plane to generate six image sets per patient. Two radiologists independently assessed the images for overall image quality, contrast, sharpness, presence of motion artifacts, blurring, and synthetic appearance for qualitative analysis, and the signal-to-noise ratio (SNR) was measured for quantitative analysis.

RESULTS

The mean scores of the DLR image set with respect to overall image quality, contrast, sharpness, motion artifacts, and blurring in the coronal and axial images were significantly superior to those of both the filtered and original images ( < 0.001). However, the DLR images showed a significantly more synthetic appearance than the other two images ( < 0.05). There was no statistically significant difference in all scores between the original and filtered images ( > 0.05). In the quantitative analysis, the SNR was significantly increased in the order of original, filtered, and DLR images ( < 0.001).

CONCLUSION

Using DLR for near-isotropic CE-T1W MRE improved the image quality and increased the SNR.

摘要

目的

本研究旨在对比基于供应商提供的深度学习重建(DLR)的近各向同性对比增强 T1 加权(CE-T1W)磁共振肠造影术(MRE)图像与常规重建图像在图像质量方面的差异。

方法

本回顾性研究共纳入 2021 年 8 月至 2022 年 2 月期间因克罗恩病而行 MRE 检查的 35 例患者。对每位患者的肠期 CE-T1W MRE 图像分别采用常规重建无图像滤波器(原始)、常规重建加图像滤波器(滤波)和原型版 AIR Recon DL 3D(DLR)进行重建,然后将这些图像重建成轴位以生成每位患者的 6 组图像。两位放射科医生分别对图像的整体质量、对比、锐度、运动伪影、模糊和合成外观进行定性评估,并进行定量分析测量信噪比(SNR)。

结果

在冠状面和轴面图像中,DLR 图像组的整体图像质量、对比、锐度、运动伪影和模糊评分的平均值明显优于滤波组和原始组( < 0.001)。然而,DLR 图像的合成外观明显优于其他两组图像( < 0.05)。原始图像和滤波图像之间的所有评分均无统计学差异( > 0.05)。在定量分析中,原始图像、滤波图像和 DLR 图像的 SNR 依次显著增加( < 0.001)。

结论

使用 DLR 进行近各向同性 CE-T1W MRE 可提高图像质量并增加 SNR。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a43b/10679616/e632ca5a6596/DIR-29-437-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验