Suppr超能文献

基于图同构网络和图采样聚合的环状RNA-疾病关联预测

Prediction of circRNA-Disease Associations Based on Graph Isomorphism Networks and Graph Sampling Aggregation.

作者信息

Lu Pengli, Liu Xusheng, Gao Fentang

出版信息

IEEE Trans Comput Biol Bioinform. 2025 Sep 2;PP. doi: 10.1109/TCBBIO.2025.3605047.

Abstract

The study of the relationship between circular RNA (circRNA) and disease is crucial for understanding the mechanisms underlying disease onset. However, relying on biological experiments to explore all potential connections between circRNAs and diseases is both time-consuming and labor-intensive. While various prediction methods have been proposed, they still possess certain limitations in their ability to extract deep features. In this study, we introduce an innovative computational framework called Graph Isomorphism Networks and Graph Sampling Aggregation for predicting unknown circRNA-disease associations (GINSACDA). Specifically, GINSACDA first computes the Gaussian interactive profile kernel (GIP) similarity and functional similarity of circRNAs, as well as the GIP similarity and semantic similarity of diseases, serving as global features. Then, node labels extracted from seven-hop subgraphs connected to the target nodes are used as local features, which are fused with the global features. Next, the fused features are input into a Graph Isomorphism Network (GIN) for feature extraction and combined with the Graph Sampling Aggregation (GraphSAGE) method to extract deeper hidden features. Finally, we employed a fully connected layer to compute the prediction scores. The results of five-fold cross-validation conducted on two datasets indicate that GINSACDA outperforms five other state-of-the-art models. Additionally, we conducted case studies on hepatocellular carcinoma and breast cancer to further validate the superior predictive capabilities of our model.

摘要

研究环状RNA(circRNA)与疾病之间的关系对于理解疾病发病机制至关重要。然而,依靠生物学实验来探索circRNA与疾病之间的所有潜在联系既耗时又费力。虽然已经提出了各种预测方法,但它们在提取深度特征的能力方面仍然存在一定的局限性。在本研究中,我们引入了一种创新的计算框架,称为用于预测未知circRNA-疾病关联的图同构网络和图采样聚合(GINSACDA)。具体而言,GINSACDA首先计算circRNA的高斯交互轮廓核(GIP)相似性和功能相似性,以及疾病的GIP相似性和语义相似性,作为全局特征。然后,从与目标节点相连的七跳子图中提取的节点标签用作局部特征,并与全局特征融合。接下来,将融合后的特征输入到图同构网络(GIN)中进行特征提取,并结合图采样聚合(GraphSAGE)方法提取更深层次的隐藏特征。最后,我们使用全连接层来计算预测分数。在两个数据集上进行的五折交叉验证结果表明,GINSACDA优于其他五个最先进的模型。此外,我们对肝细胞癌和乳腺癌进行了案例研究,以进一步验证我们模型的卓越预测能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验