Suppr超能文献

PPDAMEGCN:基于多边缘类型图卷积网络预测piRNA与疾病的关联

PPDAMEGCN: Predicting piRNA-Disease Associations Based on Multi-Edge Type Graph Convolutional Network.

作者信息

Peng Yinglong, Chu Shuang, Huang Xindi, Cheng Yan

机构信息

School of Information and Intelligence, XiangXi Vocational and Technical College for Nationalities, Jishou, China.

School of Informatics, Hunan University of Chinese Medicine, Changsha, China.

出版信息

IET Syst Biol. 2025 Jan-Dec;19(1):e70011. doi: 10.1049/syb2.70011.

Abstract

Recently, many studies have proven that Piwi-interacting RNAs (piRNAs) play key roles in various biological processes and also associate with human complicated diseases. Therefore, in order to accelerate the traditional biomedical experimental methods for determining piRNA-disease associations, many computational approaches have been proposed. However, piRNA-disease associations can be classified into known and unknown associations, each of which may provide distinct types of information. Traditional graph convolutional networks (GCNs) typically treat all edges in a graph as identical, overlooking the fact that different edge types may carry different signals and influence the learning process in unique ways. In this study, we also provide a new piRNA-disease association prediction method, called PPDAMEGCN, based on a multi-edge type graph convolutional network. First, we calculate the piRNA sequence similarity based on the piRNA sequence information and Smith-Waterman method. The disease semantic similarity is also computed by disease ontology (DO). In addition, we calculate the Gaussian interaction profile (GIP) kernel similarities of piRNA and diseases through the known piRNA-disease associations. Then, we construct the piRNA similarity network by integrating the piRNA's sequence similarity and GIP similarity. We also construct the disease similarity network by integrating disease's semantic similarity and GIP similarity. Finally, we obtain the piRNA and disease embeddings by the multi-edge type graph convolutional network model on the heterogenous piRNA-disease association network. The piRNA-disease pair association probability score is calculated by a multilayer perceptron (MLP) with its concatenated embedding. We also compare PPDAMEGCN to other piRNA-disease prediction methods. The experimental results show that our method outperforms compared methods.

摘要

最近,许多研究已经证明,与Piwi相互作用的RNA(piRNA)在各种生物过程中发挥关键作用,并且还与人类复杂疾病相关。因此,为了加速用于确定piRNA与疾病关联的传统生物医学实验方法,人们提出了许多计算方法。然而,piRNA与疾病的关联可以分为已知关联和未知关联,每种关联可能提供不同类型的信息。传统的图卷积网络(GCN)通常将图中的所有边视为相同,忽略了不同边类型可能携带不同信号并以独特方式影响学习过程这一事实。在本研究中,我们还基于多边缘类型图卷积网络提供了一种新的piRNA与疾病关联预测方法,称为PPDAMEGCN。首先,我们基于piRNA序列信息和史密斯-沃特曼方法计算piRNA序列相似性。疾病语义相似性也通过疾病本体(DO)进行计算。此外,我们通过已知的piRNA与疾病关联计算piRNA和疾病的高斯相互作用轮廓(GIP)核相似性。然后,我们通过整合piRNA的序列相似性和GIP相似性来构建piRNA相似性网络。我们还通过整合疾病的语义相似性和GIP相似性来构建疾病相似性网络。最后,我们通过异构piRNA与疾病关联网络上的多边缘类型图卷积网络模型获得piRNA和疾病嵌入。piRNA与疾病对的关联概率得分由具有其拼接嵌入的多层感知器(MLP)计算得出。我们还将PPDAMEGCN与其他piRNA与疾病预测方法进行了比较。实验结果表明,我们的方法优于其他比较方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ba/11929523/93ef21851850/SYB2-19-e70011-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验