Tareef Aya, Allawi Yazan M, Alkasasbeh Anas A, Abadleh Ahmad, Alamro Wasan, Alghamdi Mansoor, Zreikat Aymen I, Kang Hunseok
CS Dept., Mutah University, Jordan.
Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
PLoS One. 2025 Sep 2;20(9):e0331443. doi: 10.1371/journal.pone.0331443. eCollection 2025.
This paper presents a hybrid adaptive approach based on machine learning (ML) for classifying incoming traffic, feature selection and thresholding, aimed at enhancing downgrade attack detection in Wi-Fi Protected Access 3 (WPA3) networks. The fast proliferation of WPA3 is regarded critical for securing modern Wi-Fi systems, which have become integral to 5G and Beyond (5G&B) Radio Access Networks (RAN) architecture. However, the wireless communication channel remains inherently susceptible to downgrade attacks, where adversaries intentionally cause networks to revert from WPA3 to WPA2, with the malicious intent of exploiting known security flaws. Traditional Intrusion Detection Systems (IDS), which rely on fixed-threshold statistical methods, often fail to adapt to changing network environments and new, sophisticated attack strategies. To address this limitation, we introduce a novel ML-based Feature Selection and Thresholding for Downgrade Attacks Detection (MFST-DAD) approach, which comprises three stages: traffic data preprocessing, baseline adaptive feature selection, and real-time detection and prevention using ML algorithms. Experimental results on a specially generated dataset demonstrate that the proposed approach detects downgrade attacks in WPA3 networks, achieving 99.8% accuracy with a Naive Bayes classifier in both WPA3 personal and enterprise transition modes. These findings confirm the effectiveness of our proposed approach in securing next-generation Wi-Fi systems.
本文提出了一种基于机器学习(ML)的混合自适应方法,用于对传入流量进行分类、特征选择和阈值设定,旨在增强Wi-Fi保护访问3(WPA3)网络中的降级攻击检测。WPA3的迅速普及对于保护现代Wi-Fi系统至关重要,而现代Wi-Fi系统已成为5G及以后(5G&B)无线接入网络(RAN)架构不可或缺的一部分。然而,无线通信信道本质上仍然容易受到降级攻击,攻击者会故意使网络从WPA3回退到WPA2,恶意利用已知的安全漏洞。传统的入侵检测系统(IDS)依赖固定阈值统计方法,往往无法适应不断变化的网络环境和新出现的复杂攻击策略。为了解决这一局限性,我们引入了一种新颖的基于ML的降级攻击检测特征选择和阈值设定(MFST-DAD)方法,该方法包括三个阶段:流量数据预处理、基线自适应特征选择以及使用ML算法进行实时检测和预防。在一个专门生成的数据集上的实验结果表明,所提出的方法能够检测WPA3网络中的降级攻击,在WPA3个人和企业过渡模式下,使用朴素贝叶斯分类器时准确率达到99.8%。这些发现证实了我们所提出的方法在保护下一代Wi-Fi系统方面的有效性。