Luo Ranran, Xu Zhongsheng, Zhang Chenxi, Zhang Zening, Ren Pengchen, He Xiaojing, Zhang Jingjing, Liu Yun
Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China.
Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
Theranostics. 2025 Jul 28;15(16):8658-8674. doi: 10.7150/thno.111874. eCollection 2025.
Acute kidney injury (AKI), marked by a high mortality rate, remains a significant clinical challenge owing to limited therapeutic options. Oxidative stress is a key driver of AKI pathogenesis, underscoring the urgent need for innovative interventions. Recent advances demonstrate the potential of reshaping the oxidative stress microenvironment and activating intracellular autophagy to facilitate tissue repair. Nanotechnology-based antioxidants are emerging as promising approaches for AKI. Here, we present a novel nanoscale natural antioxidant platform for AKI treatment, incorporating reactive oxygen species (ROS) scavenging, oxidative stress modulation, anti-inflammatory properties and autophagy activation, which leverages these synergistic functions and lays the groundwork for clinical translation of next-generation nanotherapeutics in AKI. We synthesized a Fe-flavonoid nanozyme (FD@BSA) composed of ferric chloride hexahydrate, dihydromyricetin (DMY), and bovine serum albumin (BSA). FD@BSA integrated DMY's antioxidant and autophagy-activating functions with iron-mediated catalytic activity. Its therapeutic efficacy was evaluated in two oxidative stress-driven renal injury models: HO-induced ROS overload in human renal proximal tubular epithelial (HK-2) cells and glycerol-mediated AKI mice. Mechanistic studies employed laser confocal microscopy to visualize intracellular ROS scavenging and autophagy activation, while Western blotting and immunohistochemistry assessed protein expression and tissue-level pathology. After intravenous administration, FD@BSA nanozyme selectively accumulated in the kidneys of water-restricted, glycerol-induced AKI mice. studies demonstrated that FD@BSA significantly decreased ROS accumulation in HK-2 cells, enhanced cell viability, attenuated inflammatory responses, and induced mitophagy, thereby preserving cellular homeostasis and alleviating injury. , FD@BSA treatment markedly ameliorated glycerol-induced AKI. Mechanistically, this protective effect was mediated by inhibition of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation and upregulation of light chain 3 (LC3)-dependent autophagy, which together reduced ROS-driven cellular damage and mitigated renal injury, highlighting FD@BSA as a promising strategy for AKI. This study establishes FD@BSA nanozyme as a versatile nanotherapeutic platform for AKI, which can effectively remodel the oxidative stress microenvironment by scavenging excessive ROS and activating intracellular autophagy. Such multifunctionality extends FD@BSA's applicability beyond AKI to other ROS-driven pathologies, positioning it as a next-generation, nanotechnology-based strategy for the treatment of oxidative stress-related diseases.
急性肾损伤(AKI)死亡率高,由于治疗选择有限,仍然是一个重大的临床挑战。氧化应激是AKI发病机制的关键驱动因素,凸显了对创新干预措施的迫切需求。最近的进展表明,重塑氧化应激微环境和激活细胞内自噬以促进组织修复具有潜力。基于纳米技术的抗氧化剂正在成为治疗AKI的有前景的方法。在此,我们提出了一种用于AKI治疗的新型纳米级天然抗氧化剂平台,它具有清除活性氧(ROS)、调节氧化应激、抗炎特性和自噬激活功能,利用这些协同功能为下一代纳米疗法在AKI中的临床转化奠定了基础。我们合成了一种由六水合氯化铁、二氢杨梅素(DMY)和牛血清白蛋白(BSA)组成的铁 - 类黄酮纳米酶(FD@BSA)。FD@BSA将DMY的抗氧化和自噬激活功能与铁介导的催化活性整合在一起。在两种氧化应激驱动的肾损伤模型中评估了其治疗效果:人肾近端小管上皮(HK - 2)细胞中过氧化氢诱导的ROS过载和甘油介导的AKI小鼠模型。机制研究采用激光共聚焦显微镜观察细胞内ROS清除和自噬激活情况,同时通过蛋白质印迹和免疫组织化学评估蛋白质表达和组织水平的病理学变化。静脉注射后,FD@BSA纳米酶选择性地积聚在限水、甘油诱导的AKI小鼠的肾脏中。研究表明,FD@BSA显著降低HK - 2细胞中的ROS积累,提高细胞活力,减轻炎症反应,并诱导线粒体自噬,从而维持细胞内稳态并减轻损伤。此外,FD@BSA治疗显著改善了甘油诱导的AKI。从机制上讲,这种保护作用是通过抑制含NOD样受体家族吡咯结构域3(NLRP3)炎性小体激活和上调轻链3(LC3)依赖性自噬来介导的,这共同减少了ROS驱动的细胞损伤并减轻了肾损伤,突出了FD@BSA作为AKI治疗的一种有前景的策略。这项研究将FD@BSA纳米酶确立为一种用于AKI的多功能纳米治疗平台,它可以通过清除过量的ROS和激活细胞内自噬有效地重塑氧化应激微环境。这种多功能性将FD@BSA的适用性扩展到AKI之外的其他由ROS驱动的疾病,使其成为治疗氧化应激相关疾病的基于纳米技术的下一代策略。