文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Recent advances in copper sulfide nanoparticles for cancer diagnosis and therapy.

作者信息

Li Guangyao, Li Xiang, Lou Zhangrong, Xu Junnan, Ma Yiwen, Li Xiaorui, Liu Qiang, Sun Tao

机构信息

Department of Oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, 110042, China.

Faculty of Medicine, Dalian University of Technology, Dalian, 116024, China.

出版信息

Mater Today Bio. 2025 Aug 13;34:102197. doi: 10.1016/j.mtbio.2025.102197. eCollection 2025 Oct.


DOI:10.1016/j.mtbio.2025.102197
PMID:40893366
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12391698/
Abstract

Cancer, a highly heterogeneous and complex disease characterized by multiple genetic and metabolic abnormalities, remains one of the leading causes of death worldwide. Although conventional treatments such as surgery, chemotherapy, and radiotherapy, can mitigate the disease to some extent, their efficacy remains constrained by various factors. In recent years, nanotechnology has emerged as a promising approach for cancer treatment, with copper-based nanomaterials garnering significant attention due to their unique physicochemical properties and favorable biocompatibility. Copper sulfide (CuS) nanomaterials, in particular, have shown great potential as a versatile platform for both diagnosis and therapy, primarily due to their superior photothermal properties. Moreover, copper plays a crucial role in tumorigenesis, progression, and multiple cell death pathways, further highlighting its potential in cancer therapy. This review discusses the metabolic regulation of copper and its diverse roles in tumor biology, examines the applications and recent advances of CuS nanomaterials in cancer therapy, and explores their future potential in cancer diagnosis and treatment.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/06e7f842cd03/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/ed438e7d2ba8/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/ff96eca2f0b6/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/952f3889b824/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/8650dc32573f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/9e0a6348d547/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/4f2c8d4700a1/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/c4df1ed03719/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/b410bd9b357b/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/aa3e8c75298c/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/fe19d69a4e17/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/4efb64b5f78f/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/c27e432ae5b5/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/fa8ed9376313/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/2d131d5767c4/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/a5dafaf8ceeb/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/06e7f842cd03/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/ed438e7d2ba8/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/ff96eca2f0b6/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/952f3889b824/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/8650dc32573f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/9e0a6348d547/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/4f2c8d4700a1/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/c4df1ed03719/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/b410bd9b357b/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/aa3e8c75298c/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/fe19d69a4e17/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/4efb64b5f78f/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/c27e432ae5b5/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/fa8ed9376313/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/2d131d5767c4/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/a5dafaf8ceeb/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/12391698/06e7f842cd03/gr15.jpg

相似文献

[1]
Recent advances in copper sulfide nanoparticles for cancer diagnosis and therapy.

Mater Today Bio. 2025-8-13

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[4]
Cuproptosis: a novel therapeutic mechanism in lung cancer.

Cancer Cell Int. 2025-6-24

[5]
Cuproptosis: mechanisms and nanotherapeutic strategies in cancer and beyond.

Chem Soc Rev. 2025-6-30

[6]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[7]
Advances in photodynamic therapy and its combination strategies for breast cancer.

Acta Biomater. 2025-8-31

[8]
Non-Ti MXenes: new biocompatible and biodegradable candidates for biomedical applications.

J Mater Chem B. 2025-1-22

[9]
Innovative approaches for cancer treatment: graphene quantum dots for photodynamic and photothermal therapies.

J Mater Chem B. 2024-5-8

[10]
Nanomaterials made of non-toxic metallic sulfides: A systematic review of their potential biomedical applications.

Mater Sci Eng C Mater Biol Appl. 2017-7-1

本文引用的文献

[1]
Dual role of hydrogen sulfide in the tumor microenvironment of prostate cancer (Review).

Mol Med Rep. 2025-10

[2]
Understanding and overcoming multidrug resistance in cancer.

Nat Rev Clin Oncol. 2025-7-29

[3]
Recent Progress of Nanomedicine for the Synergetic Treatment of Radiotherapy (RT) and Photothermal Treatment (PTT).

Cancers (Basel). 2025-7-10

[4]
Construction of CuS/HKUST-1@PDA drug carrier for enhanced chemo-photothermal synergistic therapy triggered by near-infrared light in tumor treatment.

Colloids Surf B Biointerfaces. 2025-10

[5]
Advancements and limitations in traditional anti-cancer therapies: a comprehensive review of surgery, chemotherapy, radiation therapy, and hormonal therapy.

Discov Oncol. 2025-4-24

[6]
The physiological role of copper: Dietary sources, metabolic regulation, and safety concerns.

Clin Nutr. 2025-5

[7]
High Immunogenic Cuproptosis Evoked by In Situ Sulfidation-Activated Pyroptosis for Tumor-Targeted Immunotherapy of Colorectal Cancer.

Small Sci. 2024-1-17

[8]
Tumor microenvironment targeted nano-drug delivery systems for multidrug resistant tumor therapy.

Theranostics. 2025-1-2

[9]
Integrating Photothermal, Photodynamic, and Chemodynamic Therapies: The Innovative Design Based on Copper Sulfide Nanoparticles for Enhanced Tumor Therapy.

ACS Appl Bio Mater. 2025-1-20

[10]
CaCO-encircled hollow CuS nanovehicles to suppress cervical cancer through enhanced calcium overload-triggered mitochondria damage.

Asian J Pharm Sci. 2024-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索