Suppr超能文献

具有度量保持约束的监督Gromov-Wasserstein最优传输

Supervised Gromov-Wasserstein Optimal Transport with Metric-Preserving Constraints.

作者信息

Cang Zixuan, Wu Yaqi, Zhao Yanxiang

机构信息

Department of Mathematics, Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC 27695 USA.

Department of Mathematics, George Washington University, Washington, DC 20052 USA.

出版信息

SIAM J Math Data Sci. 2025;7(1):301-328. doi: 10.1137/24m1630499. Epub 2025 Feb 20.

Abstract

We introduce the supervised Gromov-Wasserstein (sGW) optimal transport, an extension of Gromov-Wasserstein that incorporates potential infinity entries in the cost tensor. These infinity entries enable sGW to enforce application-induced constraints on preserving pairwise distance to a certain extent. A numerical solver is proposed for the sGW problem and the effectiveness is demonstrated in various numerical experiments. The high-order constraints in sGW are transferred to constraints on the coupling matrix by solving a minimal vertex cover problem. The transformed problem is solved by the mirror-C descent iteration coupled with the supervised optimal transport solver. In the numerical experiments, we first validate the proposed framework by applying it to matching synthetic datasets and investigating the impact of the model parameters. Additionally, we apply sGW to aligning single-cell RNA sequencing data where the datasets are partially overlapping and only intra-dataset metrics are used. Through comparisons with other Gromov-Wasserstein variants, we demonstrate that sGW offers an additional utility of controlling distance preservation, leading to automatic estimation of overlapping portions of datasets, which brings improved stability and flexibility in data-driven applications. The codes for sGW and for reproducing the results are available on Github [https://github.com/zcang/supervisedGW].

摘要

我们引入了监督式格罗莫夫-瓦瑟斯坦(sGW)最优传输,它是格罗莫夫-瓦瑟斯坦的一种扩展,在代价张量中纳入了潜在的无穷大项。这些无穷大项使sGW能够在一定程度上强制实施应用诱导的约束,以保持成对距离。针对sGW问题提出了一种数值求解器,并在各种数值实验中证明了其有效性。通过求解一个最小顶点覆盖问题,将sGW中的高阶约束转化为对耦合矩阵的约束。通过镜像-C下降迭代与监督最优传输求解器相结合来解决转化后的问题。在数值实验中,我们首先通过将其应用于匹配合成数据集并研究模型参数的影响来验证所提出的框架。此外,我们将sGW应用于对齐单细胞RNA测序数据,其中数据集部分重叠且仅使用数据集内的度量。通过与其他格罗莫夫-瓦瑟斯坦变体进行比较,我们证明sGW提供了控制距离保持的额外效用,从而能够自动估计数据集的重叠部分,这在数据驱动的应用中带来了更高的稳定性和灵活性。sGW以及用于重现结果的代码可在Github上获取[https://github.com/zcang/supervisedGW]。

相似文献

本文引用的文献

1
Screening cell-cell communication in spatial transcriptomics via collective optimal transport.
Nat Methods. 2023 Feb;20(2):218-228. doi: 10.1038/s41592-022-01728-4. Epub 2023 Jan 23.
2
SCOT: Single-Cell Multi-Omics Alignment with Optimal Transport.
J Comput Biol. 2022 Jan;29(1):3-18. doi: 10.1089/cmb.2021.0446.
3
Manifold alignment for heterogeneous single-cell multi-omics data integration using Pamona.
Bioinformatics. 2021 Dec 22;38(1):211-219. doi: 10.1093/bioinformatics/btab594.
4
Geometric Sketching Compactly Summarizes the Single-Cell Transcriptomic Landscape.
Cell Syst. 2019 Jun 26;8(6):483-493.e7. doi: 10.1016/j.cels.2019.05.003. Epub 2019 Jun 5.
5
A comparison of single-cell trajectory inference methods.
Nat Biotechnol. 2019 May;37(5):547-554. doi: 10.1038/s41587-019-0071-9. Epub 2019 Apr 1.
6
Exponential scaling of single-cell RNA-seq in the past decade.
Nat Protoc. 2018 Apr;13(4):599-604. doi: 10.1038/nprot.2017.149. Epub 2018 Mar 1.
7
Mapping the Mouse Cell Atlas by Microwell-Seq.
Cell. 2018 Feb 22;172(5):1091-1107.e17. doi: 10.1016/j.cell.2018.02.001.
8
Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors.
Cell. 2015 Dec 17;163(7):1663-77. doi: 10.1016/j.cell.2015.11.013. Epub 2015 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验