Suppr超能文献

单细胞 RNA-seq 在过去十年中的指数级扩展。

Exponential scaling of single-cell RNA-seq in the past decade.

机构信息

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK.

Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.

出版信息

Nat Protoc. 2018 Apr;13(4):599-604. doi: 10.1038/nprot.2017.149. Epub 2018 Mar 1.

Abstract

Measurement of the transcriptomes of single cells has been feasible for only a few years, but it has become an extremely popular assay. While many types of analysis can be carried out and various questions can be answered by single-cell RNA-seq, a central focus is the ability to survey the diversity of cell types in a sample. Unbiased and reproducible cataloging of gene expression patterns in distinct cell types requires large numbers of cells. Technological developments and protocol improvements have fueled consistent and exponential increases in the number of cells that can be studied in single-cell RNA-seq analyses. In this Perspective, we highlight the key technological developments that have enabled this growth in the data obtained from single-cell RNA-seq experiments.

摘要

单细胞转录组的测量在几年前才成为可能,但现在已经成为一种非常流行的检测方法。虽然单细胞 RNA 测序可以进行许多类型的分析,并回答各种问题,但它的一个核心重点是能够检测样本中细胞类型的多样性。要对不同细胞类型中的基因表达模式进行无偏倚且可重复的编目,就需要大量的细胞。技术的发展和方案的改进推动了单细胞 RNA 测序分析中可研究细胞数量的持续和指数级增长。在这篇观点文章中,我们重点介绍了使单细胞 RNA 测序实验获得的数据量得以增长的关键技术发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验