Suppr超能文献

基于部分标注的协同学习的网络条件设定

Network conditioning for synergistic learning on partial annotations.

作者信息

Billot Benjamin, Dey Neel, Turk Esra Abaci, Grant P Ellen, Golland Polina

机构信息

Massachusetts Institute of Technology, USA.

Boston Children's Hospital and Harvard Medical School, USA.

出版信息

Proc Mach Learn Res. 2024 Jul;250:119-130.

Abstract

The robustness and accuracy of multi-organ segmentation networks is limited by the scarcity of labels. A common strategy to alleviate the annotation burden is to use partially labelled datasets, where each image can be annotated for a subset of all organs of interest. Unfortunately, this approach causes inconsistencies in the background class since it can now include target organs. Moreover, we consider the even more relaxed setting of region-based segmentation, where voxels can be labelled for super-regions, thus causing further inconsistencies across annotations. Here we propose CoNeMOS (Conditional Network for Multi-Organ Segmentation), a framework that leverages a label-conditioned network for synergistic learning on partially labelled region-based segmentations. Conditioning is achieved by combining convolutions with expressive Feature-wise Linear Modulation (FiLM) layers, whose parameters are controlled by an auxiliary network. In contrast to other conditioning methods, FiLM layers are stable to train and add negligible computation overhead, which enables us to condition the entire network. As a result, the network can where it needs to extract shared or label-specific features, instead of imposing it with the architecture (e.g., with different segmentation heads). By encouraging flexible synergies across labels, our method obtains state-of-the-art results for the segmentation of challenging low-resolution fetal MRI data. Our code is available at https://github.com/BBillot/CoNeMOS.

摘要

多器官分割网络的稳健性和准确性受到标签稀缺的限制。减轻标注负担的一种常见策略是使用部分标注的数据集,其中每个图像可以针对所有感兴趣器官的一个子集进行标注。不幸的是,这种方法会导致背景类中的不一致性,因为它现在可能包括目标器官。此外,我们考虑了基于区域分割的更宽松设置,其中体素可以针对超区域进行标注,从而在标注之间造成进一步的不一致性。在这里,我们提出了CoNeMOS(用于多器官分割的条件网络),这是一个利用标签条件网络对部分标注的基于区域的分割进行协同学习的框架。通过将卷积与具有表现力的逐特征线性调制(FiLM)层相结合来实现条件设定,其参数由一个辅助网络控制。与其他条件设定方法相比,FiLM层在训练时很稳定,并且增加的计算开销可以忽略不计,这使我们能够对整个网络进行条件设定。结果,网络可以在需要提取共享或特定于标签的特征的地方进行操作,而不是通过架构(例如,使用不同的分割头)来强制实现。通过鼓励跨标签的灵活协同作用,我们的方法在具有挑战性的低分辨率胎儿MRI数据分割方面取得了领先的结果。我们的代码可在https://github.com/BBillot/CoNeMOS上获取。

相似文献

10
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.使用患者特异性截骨导向器的前路全踝关节置换术。
JBJS Essent Surg Tech. 2025 Aug 15;15(3). doi: 10.2106/JBJS.ST.23.00027. eCollection 2025 Jul-Sep.

本文引用的文献

1
SE(3)-Equivariant and Noise-Invariant 3D Rigid Motion Tracking in Brain MRI.基于 SE(3)的脑 MRI 三维刚体运动配准与抗噪方法
IEEE Trans Med Imaging. 2024 Nov;43(11):4029-4040. doi: 10.1109/TMI.2024.3411989. Epub 2024 Nov 4.
2
Federated Multi-Organ Segmentation With Inconsistent Labels.联邦多器官分割与不一致标签。
IEEE Trans Med Imaging. 2023 Oct;42(10):2948-2960. doi: 10.1109/TMI.2023.3270140. Epub 2023 Oct 2.
5
SynthMorph: Learning Contrast-Invariant Registration Without Acquired Images.SynthMorph:无需获取图像即可学习对比不变配准。
IEEE Trans Med Imaging. 2022 Mar;41(3):543-558. doi: 10.1109/TMI.2021.3116879. Epub 2022 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验