Suppr超能文献

社会经济弱势青年成年人中焦虑和抑郁症状网络的疫情后变化:一项重复横断面研究。

Post-pandemic changes in anxiety and depression symptom networks among socioeconomically disadvantaged young Adults: A repeated cross-sectional study.

作者信息

Essadek Aziz, Guenoun Tamara, Gressier Florence, Najdini Maha, Cappelletti Maud, Frigaux Antoine, Melchior Maria, Musso Maeva, Robin Marion

机构信息

Laboratoire INTERPSY UR4432, Université de Lorraine, 54015 Nancy, France.

Hopital Saint-Maurice, Paris, France.

出版信息

SSM Popul Health. 2025 Aug 16;31:101854. doi: 10.1016/j.ssmph.2025.101854. eCollection 2025 Sep.

Abstract

BACKGROUND

The COVID-19 pandemic has significantly affected the mental health of young adults, particularly those facing socioeconomic hardship. Although psychological distress appears to be declining in the general population post-pandemic, vulnerable subgroups remain at elevated risk. Network analysis offers a transdiagnostic approach to understanding the dynamic interplay of depressive and anxiety symptoms over time.

METHODS

We conducted a repeated cross-sectional study among socioeconomically disadvantaged young adults in 2020 (T1) and 2024-2025 (T2). Depressive and anxiety symptoms were assessed using the PHQ-9 and GAD-7. Symptom networks were estimated using Gaussian Graphical Models with EBICglasso. The Network Comparison Test (NCT) evaluated changes in network structure and symptom centrality. Clustering analysis was performed to explore the reorganization of symptom groupings over time.

RESULTS

Mean scores increased significantly between T1 (n = 960) and T2 (n = 380) for both depression (PHQ-9: 9.43 to 11.35,  < 0.001) and anxiety (GAD-7: 6.3 to 8.14,  < 0.001). Suicidal ideation nearly doubled (25.9 %-42.9 %,  < 0.001). Network analysis revealed stronger interconnections between depressive and anxiety symptoms at T2. Anxiety symptoms (particularly GAD3, GAD2, and GAD1) became more central, while suicidal ideation shifted from a depression-specific cluster to one integrating anxiety symptoms. Clustering analysis supported a progressive integration of depressive and anxiety domains.

CONCLUSION

Our findings suggest an evolving post-pandemic psychopathological network, with anxiety symptoms becoming increasingly central and closely linked to suicidal ideation. These results underscore the need for targeted interventions addressing both depression and anxiety, particularly among socioeconomically vulnerable young adults, to more effectively reduce suicide risk in this population.

摘要

背景

新冠疫情对年轻人的心理健康产生了重大影响,尤其是那些面临社会经济困境的年轻人。尽管疫情后普通人群的心理困扰似乎有所下降,但弱势群体的风险仍然较高。网络分析提供了一种跨诊断方法,用于理解抑郁和焦虑症状随时间的动态相互作用。

方法

我们在2020年(T1)和2024 - 2025年(T2)对社会经济处境不利的年轻人进行了一项重复横断面研究。使用PHQ - 9和GAD - 7评估抑郁和焦虑症状。使用带有EBICglasso的高斯图形模型估计症状网络。网络比较测试(NCT)评估网络结构和症状中心性的变化。进行聚类分析以探索症状分组随时间的重组。

结果

在T1(n = 960)和T2(n = 380)之间,抑郁(PHQ - 9:从9.43到11.35,< 0.001)和焦虑(GAD - 7:从6.3到8.14,< 0.001)的平均得分均显著增加。自杀意念几乎翻倍(25.9% - 42.9%,< 0.001)。网络分析显示,在T2时抑郁和焦虑症状之间的相互联系更强。焦虑症状(特别是GAD3、GAD2和GAD1)变得更加核心,而自杀意念从特定于抑郁的聚类转移到一个整合了焦虑症状的聚类。聚类分析支持抑郁和焦虑领域的逐步整合。

结论

我们的研究结果表明,疫情后心理病理网络在不断演变,焦虑症状变得越来越核心,并与自杀意念密切相关。这些结果强调了针对抑郁和焦虑进行有针对性干预的必要性,特别是在社会经济脆弱的年轻人中,以更有效地降低该人群的自杀风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1b5/12398219/f4c2c248ea5b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验