Dubey Pankaj, Somani Anish, Lin Jessica, Iavarone Anthony T, Klinman Judith P
California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States.
Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States.
ACS Cent Sci. 2025 Jul 11;11(8):1377-1390. doi: 10.1021/acscentsci.5c00590. eCollection 2025 Aug 27.
Orotidine 5'-monophosphate decarboxylase (OMPDC) is among the most efficient enzymes known, accelerating the decarboxylation of the OMP by ∼17 orders of magnitude, primarily by lowering the enthalpy of activation by ∼28 kcal/mol. Despite this feature, OMPDC from requires ∼15 kcal/mol of activation energy following ES complex formation. This study applies temperature-dependent hydrogen-deuterium exchange mass spectrometry (TDHDX) to detect site-specific thermal protein networks that channel energy from solvent collisions to the active site. Comparative TDHDX of native OMPDC and a single-site variant (Leu123Ala) that alters the activation enthalpy for catalytic turnover reveals region-specific changes in protein flexibility, connecting local scaffold unfolding enthalpy to the activation barrier of catalysis. The data implicate four spatially resolved, thermally sensitive networks that originate at distinct protein-solvent interfaces and converge near the substrate phosphate-binding region (R203), the ribose-binding region (K42), and a catalytic loop (S127). These networks are proposed to act synergistically to optimize substrate positioning and active site electrostatics for the activated complex formation. The complexity of the identified thermal activation pathways distinguishes Mt-OMPDC from other TIM barrel enzymes previously studied by TDHDX. The findings highlight the essential role of scaffold dynamics in enzyme function with broad implications for designing efficient biocatalysts.
乳清苷5'-单磷酸脱羧酶(OMPDC)是已知效率最高的酶之一,它能使OMP的脱羧反应加速约17个数量级,主要是通过将活化焓降低约28千卡/摩尔。尽管有此特性,但来自[具体来源未提及]的OMPDC在形成ES复合物后仍需要约15千卡/摩尔的活化能。本研究应用温度依赖性氢-氘交换质谱(TDHDX)来检测将溶剂碰撞产生的能量传递到活性位点的位点特异性热蛋白网络。对天然OMPDC和改变催化周转活化焓的单点变体(Leu123Ala)进行比较TDHDX,揭示了蛋白质灵活性的区域特异性变化,将局部支架解折叠焓与催化活化能垒联系起来。数据表明有四个空间分辨的热敏感网络,它们起源于不同的蛋白质-溶剂界面,在底物磷酸结合区域(R203)、核糖结合区域(K42)和一个催化环(S127)附近汇聚。这些网络被认为协同作用以优化底物定位和活性位点静电作用,促进活化复合物的形成。所确定的热活化途径的复杂性使Mt-OMPDC有别于先前通过TDHDX研究的其他TIM桶状酶。这些发现突出了支架动力学在酶功能中的重要作用,对设计高效生物催化剂具有广泛意义。