Department of Chemistry, University of California, Berkeley, CA, USA.
California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
FEBS Lett. 2023 Jan;597(1):79-91. doi: 10.1002/1873-3468.14515. Epub 2022 Oct 27.
Formulations of hydrogen tunneling in enzyme-catalysed C-H activation reactions indicate enthalpic barriers to reaction that are independent of chemical steps and dependent on the protein scaffold. A tool to identify catalytically relevant site-specific protein thermal networks has emerged from temperature-dependent hydrogen deuterium exchange (TDHDX). Focusing on mutant enzyme forms with altered activation energies for catalysis, TDHDX provides a comparative analysis of the impact of mutation on E for local protein unfolding. Identified thermal networks appear unrelated to protein scaffold conservation and track to the dictates of the catalysed reaction, including sites for metal binding. The positions of thermal networks provide a framework for further understanding of time-dependent, functionally relevant protein motions. Measurement of nanosecond Stokes shifts at the surface of the thermal network in soybean lipoxygenase yields activation energies that are identical to E values measured for k . This finding identifies a rapid (> nanosecond), long-range and cooperative structural reorganization as the thermal barrier to catalysis. A model for protein dynamics is put forward that integrates broadly distributed protein conformational sampling with protein embedded thermal networks.
酶催化 C-H 活化反应中氢隧穿的表述表明,反应的焓垒与化学步骤无关,而依赖于蛋白质支架。一种用于识别催化相关的特定蛋白质热网络的工具已经从依赖温度的氢氘交换(TDHDX)中出现。通过聚焦于具有改变的催化活化能的突变酶形式,TDHDX 提供了对突变对局部蛋白质展开的影响的比较分析。确定的热网络似乎与蛋白质支架的保守性无关,而是与催化反应的要求(包括金属结合位点)一致。热网络的位置为进一步了解与时间相关的、功能相关的蛋白质运动提供了一个框架。在大豆脂氧合酶的热网络表面测量纳秒斯托克斯位移,得到的活化能与 k 测量的 E 值相同。这一发现确定了一种快速(>纳秒)、长程和协同的结构重排作为催化的热屏障。提出了一种蛋白质动力学模型,该模型将广泛分布的蛋白质构象采样与嵌入蛋白质的热网络结合起来。