Suppr超能文献

使用机器学习和ICCMS框架对咬合翼片X线照片中的龋齿进行自动分类

Automated Classification of Dental Caries in Bitewing Radiographs Using Machine Learning and the ICCMS Framework.

作者信息

Salehizeinabadi Mehdi, Neghab Saghar, Ameli Nazila, Baghi Kasra Koucheh, Pacheco-Pereira Camila

机构信息

Department of Dentistry, Mike Petryk School of Dentistry, University of Alberta, Edmonton, Alberta, Canada.

Department of Dentistry, School of Dentistry, University of Toronto, Toronto, Ontario, Canada.

出版信息

Int J Dent. 2025 Aug 21;2025:6644310. doi: 10.1155/ijod/6644310. eCollection 2025.

Abstract

Dental caries is considered a public health issue, with early detection being crucial for effective management. Traditional diagnostic methods, including visual examination and bitewing radiographs, are prone to interpretation variability. Artificial intelligence (AI), particularly deep learning (DL), has shown promise in improving diagnostic accuracy. This study evaluates the YOLOv11 model for dental caries detection and segmentation in bitewing radiographs, using the standardized International Caries Classification and Management System (ICCMS) framework. A dataset of 730 bitewing radiographs, containing 1115 annotated carious lesions, was used for training and validation. Annotation was performed by experienced dentists using the Roboflow platform. To evaluate annotation consistency, a subset of 10 images was independently annotated by both dentists. Agreement was assessed using Intersection over Union (IoU) and Dice similarity coefficient (DSC). The YOLOv11 model was trained for 50 epochs with data augmentation techniques. Performance was assessed using precision (P), recall (R), and mean average precision at 50% IoU (mAP50). The reliability analysis showed strong agreement, with an average interrater IoU of 0.82 and DSC of 0.85, and intrarater IoU of 0.84 and DSC of 0.87 across the 10 images. The YOLOv11 model excelled in detecting and segmenting advanced carious lesions, achieving high mAP50 values of 0.74 and 0.80 for RB4 + RC5 and RC6 classes, respectively. However, it showed moderate performance for early-stage lesions (RA1 + RA2 and RA3), with mAP50 scores of 0.61 and 0.52, respectively. This disparity highlights areas for potential enhancement through additional data augmentation and model fine-tuning. The YOLOv11 model is highly effective in identifying dental caries, especially advanced lesions, but struggles with detecting early stages of caries. AI enhancements could improve diagnostic accuracy, enable better early interventions and improve patient outcomes. The research supports incorporating AI technologies into dental radiographic evaluations to improve diagnostics and clinical results.

摘要

龋齿被视为一个公共卫生问题,早期检测对于有效管理至关重要。传统的诊断方法,包括视觉检查和咬合翼片X光片,容易出现解读差异。人工智能(AI),特别是深度学习(DL),在提高诊断准确性方面显示出了前景。本研究使用标准化的国际龋齿分类和管理系统(ICCMS)框架,评估YOLOv11模型在咬合翼片X光片中检测和分割龋齿的能力。一个包含730张咬合翼片X光片、1115个标注龋损的数据集用于训练和验证。标注由经验丰富的牙医使用Roboflow平台进行。为了评估标注一致性,10张图像的子集由两位牙医独立标注。使用交并比(IoU)和骰子相似系数(DSC)评估一致性。YOLOv11模型使用数据增强技术训练50个轮次。使用精确率(P)、召回率(R)和50% IoU时的平均平均精度(mAP50)评估性能。可靠性分析显示出高度一致性,10张图像的平均评分者间IoU为0.82,DSC为0.85,评分者内IoU为0.84,DSC为0.87。YOLOv11模型在检测和分割晚期龋损方面表现出色,RB4 + RC5和RC6类别的mAP50值分别达到0.74和0.80。然而,它在早期病变(RA1 + RA2和RA3)方面表现中等,mAP50分数分别为0.61和0.52。这种差异凸显了通过额外的数据增强和模型微调可能改进的领域。YOLOv11模型在识别龋齿,特别是晚期病变方面非常有效,但在检测龋齿早期阶段存在困难。人工智能增强可以提高诊断准确性,实现更好的早期干预并改善患者预后。该研究支持将人工智能技术纳入牙科X光评估以改善诊断和临床结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2693/12393923/6e55461581d7/IJD2025-6644310.001.jpg

相似文献

1
Automated Classification of Dental Caries in Bitewing Radiographs Using Machine Learning and the ICCMS Framework.
Int J Dent. 2025 Aug 21;2025:6644310. doi: 10.1155/ijod/6644310. eCollection 2025.
2
Dental caries detection in children using intraoral scans and deep learning.
J Dent. 2025 Sep;160:105906. doi: 10.1016/j.jdent.2025.105906. Epub 2025 Jun 15.
4
Artificial intelligence-enhanced ultrasound imaging for thyroid nodule detection and malignancy classification: a study on YOLOv11.
Quant Imaging Med Surg. 2025 Sep 1;15(9):7964-7976. doi: 10.21037/qims-2025-257. Epub 2025 Aug 14.
9
Deep learning for caries detection: A systematic review.
J Dent. 2022 Jul;122:104115. doi: 10.1016/j.jdent.2022.104115. Epub 2022 Mar 30.

本文引用的文献

1
Augmented intelligence in oral and maxillofacial radiology: a systematic review.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2025 Aug;140(2):237-250. doi: 10.1016/j.oooo.2025.03.015. Epub 2025 Apr 5.
2
Advanced AI-driven detection of interproximal caries in bitewing radiographs using YOLOv8.
Sci Rep. 2025 Feb 7;15(1):4641. doi: 10.1038/s41598-024-84737-x.
4
Automating Dental Condition Detection on Panoramic Radiographs: Challenges, Pitfalls, and Opportunities.
Diagnostics (Basel). 2024 Oct 21;14(20):2336. doi: 10.3390/diagnostics14202336.
5
Current Approaches to Diagnosis of Early Proximal Carious Lesion: A Literature Review.
Cureus. 2023 Aug 14;15(8):e43489. doi: 10.7759/cureus.43489. eCollection 2023 Aug.
6
Enhancing Caries Detection in Bitewing Radiographs Using YOLOv7.
J Digit Imaging. 2023 Dec;36(6):2635-2647. doi: 10.1007/s10278-023-00871-4. Epub 2023 Aug 28.
7
Efficient-Lightweight YOLO: Improving Small Object Detection in YOLO for Aerial Images.
Sensors (Basel). 2023 Jul 15;23(14):6423. doi: 10.3390/s23146423.
8
Dental Caries and Its Management.
Int J Dent. 2023 Jan 3;2023:9365845. doi: 10.1155/2023/9365845. eCollection 2023.
9
Feasibility of deep learning for dental caries classification in bitewing radiographs based on the ICCMS™ radiographic scoring system.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2023 Feb;135(2):272-281. doi: 10.1016/j.oooo.2022.06.012. Epub 2022 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验