Suppr超能文献

基于口腔全景 X 射线 OPG 图像的口腔疾病分类深度学习模型。

Deep Learning Models for Classification of Dental Diseases Using Orthopantomography X-ray OPG Images.

机构信息

Division of Radiology, Department of Internal Medicine, Medical College, Najran University, Najran 61441, Saudi Arabia.

Department of Computer Science and Information Technology, University of Sargodha, Sargodha 40100, Pakistan.

出版信息

Sensors (Basel). 2022 Sep 28;22(19):7370. doi: 10.3390/s22197370.

Abstract

The teeth are the most challenging material to work with in the human body. Existing methods for detecting teeth problems are characterised by low efficiency, the complexity of the experiential operation, and a higher level of user intervention. Older oral disease detection approaches were manual, time-consuming, and required a dentist to examine and evaluate the disease. To address these concerns, we propose a novel approach for detecting and classifying the four most common teeth problems: cavities, root canals, dental crowns, and broken-down root canals, based on the deep learning model. In this study, we apply the YOLOv3 deep learning model to develop an automated tool capable of diagnosing and classifying dental abnormalities, such as dental panoramic X-ray images (OPG). Due to the lack of dental disease datasets, we created the Dental X-rays dataset to detect and classify these diseases. The size of datasets used after augmentation was 1200 images. The dataset comprises dental panoramic images with dental disorders such as cavities, root canals, BDR, dental crowns, and so on. The dataset was divided into 70% training and 30% testing images. The trained model YOLOv3 was evaluated on test images after training. The experiments demonstrated that the proposed model achieved 99.33% accuracy and performed better than the existing state-of-the-art models in terms of accuracy and universality if we used our datasets on other models.

摘要

牙齿是人体中最具挑战性的材料。现有的牙齿问题检测方法效率低、操作经验复杂,且用户干预程度较高。传统的口腔疾病检测方法是手动的,既耗时又费力,还需要牙医进行检查和评估。为了解决这些问题,我们提出了一种基于深度学习模型的检测和分类四种最常见牙齿问题(龋齿、根管治疗、牙冠和根管崩裂)的新方法。在本研究中,我们应用 YOLOv3 深度学习模型开发了一种自动化工具,能够诊断和分类口腔 X 光图像(OPG)等牙齿异常。由于缺乏牙齿疾病数据集,我们创建了牙齿 X 光数据集来检测和分类这些疾病。经过扩充后,数据集的大小为 1200 张图像。数据集包含有牙齿疾病的全景图像,如龋齿、根管治疗、BDR、牙冠等。数据集分为 70%的训练图像和 30%的测试图像。训练后的模型 YOLOv3 在测试图像上进行了评估。实验表明,与现有的最先进模型相比,如果我们在其他模型上使用我们的数据集,该模型的准确率达到了 99.33%,在准确性和通用性方面表现更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验