文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Large vision model framework for automated analysis: From static morphometry to dynamic neural activity.

作者信息

Guisnet Aurélie, Hendricks Michael

机构信息

Department of Biology, McGill University, Montreal, Quebec, Canada.

出版信息

bioRxiv. 2025 Aug 19:2025.08.18.670800. doi: 10.1101/2025.08.18.670800.


DOI:10.1101/2025.08.18.670800
PMID:40894723
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12393352/
Abstract

Quantitative phenotyping of is essential across numerous fields, yet data extraction remains a significant analytical bottleneck. Traditional segmentation methods, typically reliant on pixel-intensity thresholding, are highly sensitive to variations in imaging conditions and often fail in the presence of noise, overlaps, or uneven illumination. These failures necessitate meticulous experimental setups, expensive hardware, or extensive manual curation, which reduces throughput and introduces bias. Here, we introduce TWARDIS (Tools for Worm Automated Recognition & Dynamic Imaging System), a modular, Python-based analysis suite that leverages large foundation vision models, specifically the Segment Anything Models (SAM and SAM2) and a fine-tuned vision transformer classifier, to overcome these limitations. We demonstrate the versatility and robustness of our AI compound system across diverse modalities. For static morphological analysis, TWARDIS successfully resolved overlapping worms in noisy images without human intervention, showing a 0.999 correlation with manual segmentation. In behavioral assays (swimming and crawling), the pipeline enabled high-definition postural analysis even in low-resolution, wide-field recordings where the worm occupied only ~0.25% of the field of view, accurately resolving complex postures without frame rejection. Finally, when applied to calcium imaging of semi-restricted animals, TWARDIS provided precise, frame-by-frame segmentation of neural compartments, reducing the artificial signal flattening common in traditional region-of-interest-based approaches and enabling the extraction of biologically accurate, absolute head positions. The system's hardware-scalable architecture and modular design ensure both current accessibility and future improvements without restructuring. By automating the most time-consuming aspects of image analysis, TWARDIS removes critical bottlenecks and tradeoffs in research, enabling researchers to focus on biological questions rather than technical image processing challenges.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/12393352/e93703ab5170/nihpp-2025.08.18.670800v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/12393352/09e25b88fe23/nihpp-2025.08.18.670800v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/12393352/1a83a1194d2a/nihpp-2025.08.18.670800v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/12393352/89be664aac04/nihpp-2025.08.18.670800v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/12393352/e93703ab5170/nihpp-2025.08.18.670800v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/12393352/09e25b88fe23/nihpp-2025.08.18.670800v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/12393352/1a83a1194d2a/nihpp-2025.08.18.670800v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/12393352/89be664aac04/nihpp-2025.08.18.670800v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/12393352/e93703ab5170/nihpp-2025.08.18.670800v1-f0004.jpg

相似文献

[1]
Large vision model framework for automated analysis: From static morphometry to dynamic neural activity.

bioRxiv. 2025-8-19

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Integrated neural network framework for multi-object detection and recognition using UAV imagery.

Front Neurorobot. 2025-7-30

[4]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[5]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[6]
Short-Term Memory Impairment

2025-1

[7]
DeePosit, an AI-based tool for detecting mouse urine and fecal depositions from thermal video clips of behavioral experiments.

Elife. 2025-8-28

[8]
A segment anything model-guided and match-based semi-supervised segmentation framework for medical imaging.

Med Phys. 2025-3-29

[9]
Audit and feedback: effects on professional practice.

Cochrane Database Syst Rev. 2025-3-25

[10]
Elbow Fractures Overview

2025-1

本文引用的文献

[1]
: A Software Suite for Quantifying Properties of Locomotion, Bending, Sleep, and Action Potentials.

eNeuro. 2025-8-27

[2]
A neural network model enables worm tracking in challenging conditions and increases signal-to-noise ratio in phenotypic screens.

PLoS Comput Biol. 2025-8-8

[3]
findWormz is a user-friendly automated fluorescence quantification method for research.

MicroPubl Biol. 2025-4-24

[4]
WormRACER: Robust Analysis by Computer-Enhanced Recording.

Geroscience. 2025-3-26

[5]
A high precision method of segmenting complex postures in Caenorhabditis elegans and deep phenotyping to analyze lifespan.

Sci Rep. 2025-3-14

[6]
Review of models for estimating 3D human pose using deep learning.

PeerJ Comput Sci. 2025-2-4

[7]
Segment Anything for Microscopy.

Nat Methods. 2025-3

[8]
Segment anything in medical images.

Nat Commun. 2024-1-22

[9]
Fast detection of slender bodies in high density microscopy data.

Commun Biol. 2023-7-19

[10]
A hierarchical process model links behavioral aging and lifespan in C. elegans.

PLoS Comput Biol. 2022-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索