Suppr超能文献

一种神经网络模型能够在具有挑战性的条件下实现线虫追踪,并提高表型筛选中的信噪比。

A neural network model enables worm tracking in challenging conditions and increases signal-to-noise ratio in phenotypic screens.

作者信息

Weheliye Weheliye H, Rodriguez Javier, Feriani Luigi, Javer Avelino, Uhlmann Virginie, Brown André E X

机构信息

MRC Laboratory of Medical Sciences, London, United Kingdom.

Institute of Clinical Sciences, Imperial College London, London, United Kingdom.

出版信息

PLoS Comput Biol. 2025 Aug 8;21(8):e1013345. doi: 10.1371/journal.pcbi.1013345. eCollection 2025 Aug.

Abstract

High-resolution posture tracking of C. elegans has applications in genetics, neuroscience, and drug screening. While classic methods can reliably track isolated worms on uniform backgrounds, they fail when worms overlap, coil, or move in complex environments. Model-based tracking and deep learning approaches have addressed these issues to an extent, but there is still significant room for improvement in tracking crawling worms. Here we train a version of the DeepTangle algorithm developed for swimming worms using a combination of data derived from Tierpsy tracker and hand-annotated data for more difficult cases. DeepTangleCrawl (DTC) outperforms existing methods, reducing failure rates and producing more continuous, gap-free worm trajectories that are less likely to be interrupted by collisions between worms or self-intersecting postures (coils). We show that DTC enables the analysis of previously inaccessible behaviours and increases the signal-to-noise ratio in phenotypic screens, even for data that was specifically collected to be compatible with legacy trackers including low worm density and thin bacterial lawns. DTC broadens the applicability of high-throughput worm imaging to more complex behaviours that involve worm-worm interactions and more naturalistic environments including thicker bacterial lawns.

摘要

秀丽隐杆线虫的高分辨率姿态跟踪在遗传学、神经科学和药物筛选中具有应用价值。虽然传统方法能够在均匀背景下可靠地跟踪单个线虫,但当线虫相互重叠、盘绕或在复杂环境中移动时,这些方法就会失效。基于模型的跟踪和深度学习方法在一定程度上解决了这些问题,但在跟踪爬行线虫方面仍有很大的改进空间。在这里,我们使用从Tierpsy跟踪器获得的数据和针对更困难情况的人工标注数据相结合,训练了一个为游泳线虫开发的DeepTangle算法版本。DeepTangleCrawl(DTC)优于现有方法,降低了失败率,并生成了更连续、无间隙的线虫轨迹,这些轨迹不太可能因线虫之间的碰撞或自相交姿态(盘绕)而中断。我们表明,DTC能够分析以前无法获得的行为,并提高表型筛选中的信噪比,即使对于专门为与传统跟踪器兼容而收集的数据,包括低线虫密度和薄细菌草坪的数据也是如此。DTC拓宽了高通量线虫成像在更复杂行为中的适用性,这些行为涉及线虫与线虫之间的相互作用以及更自然的环境,包括更厚的细菌草坪。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7399/12360645/a0ab46547b97/pcbi.1013345.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验