文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Synergistic antibacterial effects of postbiotics combined with linezolid and amikacin against nosocomial pathogens.

作者信息

Yaprak Çolak Elif, Duran Nizami

机构信息

Department of Medical Microbiology, Medical Faculty, Hatay Mustafa Kemal University, Antakya-Hatay, Türkiye.

出版信息

Front Cell Infect Microbiol. 2025 Aug 14;15:1616501. doi: 10.3389/fcimb.2025.1616501. eCollection 2025.


DOI:10.3389/fcimb.2025.1616501
PMID:40895303
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12390976/
Abstract

BACKGROUND AND AIM: The global rise in antimicrobial resistance (AMR) has rendered many conventional antibiotics less effective, particularly against nosocomial pathogens such as , , , and . This study investigated the antimicrobial and synergistic effects of postbiotics derived from , , , and , administered alone or in combination with either linezolid (for ) or amikacin (for Gram-negative strains). MATERIALS AND METHODS: Postbiotics were obtained through anaerobic fermentation, followed by centrifugation and filtration. Cytotoxicity was assessed via MTT assays on Vero cell lines. Infection models involving pathogen-specific adhesion and invasion assays were used, with CFU/mL quantification and statistical evaluation by one-way ANOVA and Tukey's test. RESULTS: The postbiotics exhibited potent antimicrobial activity across all tested pathogens. Combined with linezolid, the dual and triple postbiotic formulations significantly enhanced antibacterial effects against from the early hours of incubation. Similarly, combinations with amikacin produced potent synergistic effects against , , and , particularly in triple combinations involving and . Postbiotics sometimes outperformed antibiotics, such as ST+LC postbiotics against . These findings suggest that postbiotics can enhance antibiotic efficacy-possibly by modulating membrane permeability, disrupting biofilms, or altering bacterial communication systems. Their low cytotoxicity and pathogen-specific responses indicate that postbiotics are safe and may be tailored for targeted use. CONCLUSIONS: In conclusion, postbiotic-antibiotic combinations, especially with linezolid and amikacin, present promising low-toxicity, synergistic therapeutic strategies. These results lay a strong foundation for advancing microbiome-based adjunct therapies to combat AMR in clinical settings.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/225d8b232c61/fcimb-15-1616501-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/96aad902a15c/fcimb-15-1616501-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/3b918eb6ca90/fcimb-15-1616501-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/7b4d984963a3/fcimb-15-1616501-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/dc1f6f60e286/fcimb-15-1616501-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/978e8d4d1686/fcimb-15-1616501-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/0c61a96ba306/fcimb-15-1616501-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/f24aa4290792/fcimb-15-1616501-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/18bb12fb22bb/fcimb-15-1616501-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/186598e84ee2/fcimb-15-1616501-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/f73a1359c1f8/fcimb-15-1616501-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/ce6ac6218733/fcimb-15-1616501-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/f03a02308ca2/fcimb-15-1616501-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/3721a9f9d903/fcimb-15-1616501-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/229a74e7fa77/fcimb-15-1616501-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/ef679ee51072/fcimb-15-1616501-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/f8083b935df8/fcimb-15-1616501-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/3a2a4f51e7d3/fcimb-15-1616501-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/26abd6ea7d3b/fcimb-15-1616501-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/c1402ddbc127/fcimb-15-1616501-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/083c2e3c75d6/fcimb-15-1616501-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/17780e4679e5/fcimb-15-1616501-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/ec9d7a9b53df/fcimb-15-1616501-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/65b3607e769e/fcimb-15-1616501-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/225d8b232c61/fcimb-15-1616501-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/96aad902a15c/fcimb-15-1616501-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/3b918eb6ca90/fcimb-15-1616501-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/7b4d984963a3/fcimb-15-1616501-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/dc1f6f60e286/fcimb-15-1616501-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/978e8d4d1686/fcimb-15-1616501-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/0c61a96ba306/fcimb-15-1616501-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/f24aa4290792/fcimb-15-1616501-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/18bb12fb22bb/fcimb-15-1616501-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/186598e84ee2/fcimb-15-1616501-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/f73a1359c1f8/fcimb-15-1616501-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/ce6ac6218733/fcimb-15-1616501-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/f03a02308ca2/fcimb-15-1616501-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/3721a9f9d903/fcimb-15-1616501-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/229a74e7fa77/fcimb-15-1616501-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/ef679ee51072/fcimb-15-1616501-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/f8083b935df8/fcimb-15-1616501-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/3a2a4f51e7d3/fcimb-15-1616501-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/26abd6ea7d3b/fcimb-15-1616501-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/c1402ddbc127/fcimb-15-1616501-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/083c2e3c75d6/fcimb-15-1616501-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/17780e4679e5/fcimb-15-1616501-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/ec9d7a9b53df/fcimb-15-1616501-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/65b3607e769e/fcimb-15-1616501-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/12390976/225d8b232c61/fcimb-15-1616501-g024.jpg

相似文献

[1]
Synergistic antibacterial effects of postbiotics combined with linezolid and amikacin against nosocomial pathogens.

Front Cell Infect Microbiol. 2025-8-14

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Inhibitory efficacy, production dynamics, and characterization of postbiotics of lactic acid bacteria.

BMC Microbiol. 2025-8-6

[4]
Biological activities of optimized biosynthesized selenium nanoparticles using Proteus mirabilis PQ350419 alone or combined with chitosan and ampicillin against common multidrug-resistant bacteria.

Microb Cell Fact. 2025-7-5

[5]
Comprehensive biological evaluation of infuzide as a potent antimicrobial, alone and in combination with gentamicin, linezolid, and minocycline targeting MDR and sp.

Microbiol Spectr. 2025-7

[6]
VLX600, an anticancer iron chelator, exerts antimicrobial effects on infections.

Microbiol Spectr. 2025-6-20

[7]
Nocardia Keratitis

2025-1

[8]
Evaluation of the antibacterial and antibiofilm effect of mycosynthesized silver and selenium nanoparticles and their synergistic effect with antibiotics on nosocomial bacteria.

Microb Cell Fact. 2025-1-4

[9]
Identification of an antibiotic from an HTS targeting EF-Tu:tRNA interaction: a prospective topical treatment for MRSA skin infections.

Appl Environ Microbiol. 2025-1-31

[10]
Ophthalmia Neonatorum

2025-1

本文引用的文献

[1]
Potential Future Applications of Postbiotics in the Context of Ensuring Food Safety and Human Health Improvement.

Antibiotics (Basel). 2025-7-3

[2]
Postbiotics Formulation and Therapeutic Effect in Inflammation: A Systematic Review.

Nutrients. 2025-6-30

[3]
Scaling Up Postbiotics Production: A Prospective Review of Processes and Health Benefits.

Probiotics Antimicrob Proteins. 2025-7-7

[4]
Antibiotic potentiators as a promising strategy for combating antibiotic resistance.

NPJ Antimicrob Resist. 2025-6-6

[5]
Comprehensive genomics, probiotic, and antibiofilm potential analysis of Streptococcus thermophilus strains isolated from homemade and commercial dahi.

Sci Rep. 2025-2-27

[6]
Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050.

Lancet. 2024-9-28

[7]
Synergistic action of antimicrobial peptides and antibiotics: current understanding and future directions.

Front Microbiol. 2024-7-31

[8]
Probiotics, prebiotics, and postbiotics in health and disease.

MedComm (2020). 2023-11-4

[9]
Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health.

Cells. 2023-1-2

[10]
Postbiotics - when simplification fails to clarify.

Nat Rev Gastroenterol Hepatol. 2021-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索