Yildirim Can, Shukla Aditya, Zhang Yubin, Mavrikakis Nikolas, Lesage Louis, Sanna Virginia, Sarkis Marilyn, Li Yaozhu, La Bella Michela, Detlefs Carsten, Poulsen Henning Friis
European Synchrotron Radiation Facility, Grenoble, France.
Department of Civil and Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark.
Commun Mater. 2025;6(1):198. doi: 10.1038/s43246-025-00926-9. Epub 2025 Aug 29.
Dark Field X-ray Microscopy (DFXM) has advanced 3D non-destructive, high-resolution imaging of strain and orientation in crystalline materials, enabling the study of embedded structures in bulk. However, the photon-hungry nature of monochromatic DFXM limits its applicability for studying highly deformed or weakly crystalline structures, and constrains time-resolved studies in industrially relevant materials. Here, we present pink-beam DFXM (pDFXM) at the ID03 beamline of ESRF, achieving a 27-fold increase in diffracted intensity while maintaining 100 nm spatial resolution. We validate pDFXM by imaging a partially recrystallized aluminum grain, confirming sufficient angular resolution for microstructure mapping. The increased flux significantly enhances the diffracted signal, enabling the resolution of subgrain structures. Additionally, we image a highly deformed ferritic iron grain, previously inaccessible in monochromatic mode without focusing optics. Beyond static imaging, pDFXM enables real-time tracking of grain growth during annealing, achieving hundred-millisecond temporal resolution. By combining high photon flux with non-destructive, high-resolution 3D mapping, pDFXM expands diffraction-contrast imaging to poorly diffracting crystals, unlocking new opportunities for studying grain growth, fatigue, and corrosion in bulk materials.
暗场X射线显微镜(DFXM)已实现对晶体材料中的应变和取向进行三维无损高分辨率成像,从而能够研究块状材料中的嵌入式结构。然而,单色DFXM对光子的高需求特性限制了其在研究高度变形或弱结晶结构方面的适用性,并制约了对工业相关材料的时间分辨研究。在此,我们展示了欧洲同步辐射装置(ESRF)ID03光束线上的粉红光束DFXM(pDFXM),在保持100纳米空间分辨率的同时,衍射强度提高了27倍。我们通过对部分再结晶的铝晶粒成像来验证pDFXM,确认其具有足够的角分辨率用于微观结构映射。通量的增加显著增强了衍射信号,能够分辨亚晶粒结构。此外,我们对一个高度变形的铁素体铁晶粒进行了成像,该晶粒在没有聚焦光学元件的单色模式下以前无法成像。除了静态成像,pDFXM还能够在退火过程中实时跟踪晶粒生长,实现了百毫秒级的时间分辨率。通过将高光子通量与无损高分辨率三维映射相结合,pDFXM将衍射对比成像扩展到衍射较弱的晶体,为研究块状材料中的晶粒生长、疲劳和腐蚀开辟了新机遇。