Dresselhaus-Marais Leora E, Winther Grethe, Howard Marylesa, Gonzalez Arnulfo, Breckling Sean R, Yildirim Can, Cook Philip K, Kutsal Mustafacan, Simons Hugh, Detlefs Carsten, Eggert Jon H, Poulsen Henning Friis
Physics Division, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550, USA.
Technical University of Denmark, Department of Mechanical Engineering, Bldg. 425, 2800 Kgs. Lyngby, Denmark.
Sci Adv. 2021 Jul 14;7(29). doi: 10.1126/sciadv.abe8311. Print 2021 Jul.
Connecting a bulk material's microscopic defects to its macroscopic properties is an age-old problem in materials science. Long-range interactions between dislocations (line defects) are known to play a key role in how materials deform or melt, but we lack the tools to connect these dynamics to the macroscopic properties. We introduce time-resolved dark-field x-ray microscopy to directly visualize how dislocations move and interact over hundreds of micrometers deep inside bulk aluminum. With real-time movies, we reveal the thermally activated motion and interactions of dislocations that comprise a boundary and show how weakened binding forces destabilize the structure at 99% of the melting temperature. Connecting dynamics of the microstructure to its stability, we provide important opportunities to guide and validate multiscale models that are yet untested.
将块状材料的微观缺陷与其宏观性质联系起来是材料科学中一个由来已久的问题。位错(线缺陷)之间的长程相互作用在材料的变形或熔化过程中起着关键作用,但我们缺乏将这些动力学与宏观性质联系起来的工具。我们引入了时间分辨暗场X射线显微镜,以直接观察位错在块状铝内部数百微米深处的移动和相互作用。通过实时电影,我们揭示了构成边界的位错的热激活运动和相互作用,并展示了在99%的熔化温度下,减弱的结合力如何使结构不稳定。将微观结构的动力学与其稳定性联系起来,我们提供了重要的机会来指导和验证尚未经过测试的多尺度模型。