Suppr超能文献

UMATBrush:刷牙活动的惯性信号数据集。

UMATBrush: A dataset of inertial signals of toothbrushing activities.

作者信息

González-Cañete F J, Casilari E

机构信息

Departamento de Tecnología Electrónica, Telecommunication Research Institute (TELMA), Universidad de Málaga, 29071 Málaga, Spain.

出版信息

Data Brief. 2025 Aug 9;62:111980. doi: 10.1016/j.dib.2025.111980. eCollection 2025 Oct.

Abstract

Smartwatches and other commercially available wrist-worn devices have become a low-cost tool which, in recent years, has gained enormous popularity for monitoring habits associated with a healthy lifestyle. In this regard, the increasing computational power of smartwatches is facilitating the integration of complex machine learning and deep learning algorithms, which implement manual activity recognizers based on the inertial sensor signals that these wearables natively include. One specific application of such human activity recognition (HAR) systems is the monitoring of toothbrushing, aimed at fostering oral health habits among the population. For the evaluation and testing of these types of detectors, having access to databases of inertial signals captured by smartwatches is of paramount importance. This work describes the UMATBrush repository, which results from monitoring four experimental subjects during a large number of toothbrushing sessions using three commercial smartwatches. In contrast to other similar repositories, which are focused on the generic development of detectors for a limited set of manual activities, this repository also includes long periods of monitoring of the subjects during their daily lives. In the dataset, each acceleration sample captured by the watches is binary labelled as either corresponding or not to a toothbrushing session. In this way, potential classifiers using these traces could be trained and validated under realistic conditions, by learning to distinguish the toothbrushing operation from other real-life activities.

摘要

智能手表和其他市面上可买到的腕戴设备已成为一种低成本工具,近年来,在监测与健康生活方式相关的习惯方面广受欢迎。在这方面,智能手表不断增强的计算能力推动了复杂机器学习和深度学习算法的整合,这些算法基于这些可穿戴设备本身包含的惯性传感器信号来实现手动活动识别器。此类人类活动识别(HAR)系统的一个具体应用是刷牙监测,旨在培养大众的口腔健康习惯。对于评估和测试这类探测器而言,能够获取智能手表捕获的惯性信号数据库至关重要。这项工作描述了UMATBrush数据库,它是通过使用三款商用智能手表在大量刷牙过程中对四名实验对象进行监测而得到的。与其他类似数据库不同,其他数据库专注于针对有限的一组手动活动进行探测器的通用开发,而这个数据库还包括对受试者日常生活的长时间监测。在数据集中,手表捕获的每个加速度样本都被二元标记为是否对应刷牙过程。通过这种方式,使用这些轨迹的潜在分类器可以在现实条件下进行训练和验证,即学会将刷牙操作与其他现实生活活动区分开来。

相似文献

1
UMATBrush: A dataset of inertial signals of toothbrushing activities.UMATBrush:刷牙活动的惯性信号数据集。
Data Brief. 2025 Aug 9;62:111980. doi: 10.1016/j.dib.2025.111980. eCollection 2025 Oct.

本文引用的文献

5
A multi-sensory dataset for the activities of daily living.一个用于日常生活活动的多感官数据集。
Data Brief. 2020 Aug 2;32:106122. doi: 10.1016/j.dib.2020.106122. eCollection 2020 Oct.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验