Li Xiao, Zhao Wenyuan, Liu Jiaxing, Li Rong, Jia Sitong, Li Cancan, Bao Deyu, Zhu Shan, Wang Peng, Huang Lei, Yang Songqiu, Yu Miao, Liu Xiang, Xue Zhenjie, Wang Tie
Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology Tianjin 300384 P. R. China
Dalian Institute of Chemical Physics, Chinese Academy of Sciences P. R. China
Chem Sci. 2025 Aug 18. doi: 10.1039/d5sc05009j.
Photoactivated sensors offer a safe, low-power alternative to thermal sensors, yet their performance against trace concentrations of weakly reactive biomarkers is fundamentally crippled by the rapid energy loss of photogenerated carriers electron relaxation into the band-edge. This process limits the number of electrons available for sensing. Here, we overcome this limitation by introducing a new principle: non-equilibrium hot-electron-mediated chemoresistance. Our quantum-engineered CdSe@CdS-Au ternary heterostructure is expressly designed to win the kinetic race against relaxation. Compared with two-tip gold domains governed by cooled electron transfer, the multi-site specific Au structure enhances electron transfer rates by 86-fold to 1.60 × 10 s with efficiencies of 99%, indicating ballistic hot-electron injection from the semiconductor into multi-site Au nanodomains prior to relaxation, as verified by femtosecond transient absorption spectroscopy. Functionalization with 4-bromobenzenethiol enables selective detection of -2-nonenal at 0.70 ppb-a new benchmark in optical sensors and chemoresistive sensors. Furthermore, a portable six-channel UV-activated sensor chip based on this principle demonstrates a 97.9% diagnostic accuracy in simulated exhaled breath, showcasing a transformative pathway toward non-invasive screening of non-small cell lung cancer.
光激活传感器为热传感器提供了一种安全、低功耗的替代方案,然而,由于光生载流子的快速能量损失——电子弛豫到带边,它们在检测痕量浓度的弱反应性生物标志物方面的性能从根本上受到了损害。这个过程限制了可用于传感的电子数量。在这里,我们通过引入一种新原理——非平衡热电子介导的化学电阻来克服这一限制。我们通过量子工程设计的CdSe@CdS-Au三元异质结构明确设计用于在与弛豫的动力学竞争中获胜。与由冷却电子转移控制的双尖端金域相比,多位点特异性金结构将电子转移速率提高了86倍,达到1.60×10 s,效率为99%,这表明在弛豫之前,从半导体到多位点金纳米域存在弹道热电子注入,飞秒瞬态吸收光谱证实了这一点。用4-溴苯硫醇进行功能化能够选择性检测0.70 ppb的反-2-壬烯醛——这是光学传感器和化学电阻传感器的一个新基准。此外,基于这一原理的便携式六通道紫外线激活传感器芯片在模拟呼气中显示出97.9%的诊断准确率,展示了一条通往非小细胞肺癌非侵入性筛查的变革性途径。