Suppr超能文献

葡萄膜黑色素瘤放疗的临床决策:经验丰富的放射肿瘤学家与领先的生成式人工智能模型的比较表现

Clinical decision-making for uveal melanoma radiotherapy: comparative performance of experienced radiation oncologists and leading generative AI models.

作者信息

Wang Xing, Wang Peng

机构信息

Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing, China.

出版信息

Front Oncol. 2025 Aug 14;15:1605916. doi: 10.3389/fonc.2025.1605916. eCollection 2025.

Abstract

BACKGROUND

Uveal melanoma is the most common primary intraocular malignancy in adults, yet radiotherapy decision-making for this disease often remains complex and variable. Although emerging generative AI models have shown promise in synthesizing vast clinical information, few studies have systematically compared their performance against experienced radiation oncologists in this specialized domain. This study examined the comparative accuracy of three leading generative AI models and experienced radiation oncologists in guideline-based clinical decision-making for uveal melanoma.

METHODS

A structured, 20-question examination reflecting standard radiotherapy guidelines was developed. Fifty radiation oncologists, each with 10-15 years of experience, completed an open-book exam following a 15-day standardized review. Meanwhile, Grok 3 (Think), Gemini 2.0 Flash Thinking, and Open ai o1 pro were each tested through 10 independent chat sessions. Twelve recognized experts in uveal melanoma, blinded to the source of each submission, scored all answer sets. Kruskal-Wallis tests with comparisons were conducted to evaluate group-level differences in total and domain-specific performance.

RESULTS

Of the 80 total sets (50 from oncologists, 30 from AI), Open ai o1 pro achieved the highest mean total score (98.0 ± 1.9), followed by oncologists (91.5 ± 3.2), Grok 3 (82.3 ± 2.1), and Gemini 2.0 (74.2 ± 3.4). Statistically significant differences emerged across all domains, with human experts particularly excelling in treatment selection but still trailing Open ai o1 pro overall. Completion time was significantly shorter for the AI models compared with oncologists.

CONCLUSION

These findings suggest that advanced generative AI can exceed expert-level performance in certain aspects of radiotherapy decision-making for uveal melanoma. Although AI may expedite clinical workflows and offer highly accurate guidance, human judgment remains indispensable for nuanced patient care.

摘要

背景

葡萄膜黑色素瘤是成人中最常见的原发性眼内恶性肿瘤,但针对这种疾病的放疗决策往往仍然复杂且多变。尽管新兴的生成式人工智能模型在整合大量临床信息方面显示出了前景,但很少有研究在这个专业领域系统地将它们的表现与经验丰富的放射肿瘤学家进行比较。本研究考察了三种领先的生成式人工智能模型和经验丰富的放射肿瘤学家在基于指南的葡萄膜黑色素瘤临床决策中的比较准确性。

方法

制定了一份包含20个问题的结构化考试,反映标准放疗指南。五十名放射肿瘤学家,每人有10至15年的经验,在进行15天的标准化复习后完成了一场开卷考试。同时,Grok 3(Think)、Gemini 2.0 Flash Thinking和Open ai o1 pro分别通过10次独立的聊天会话进行测试。十二位公认的葡萄膜黑色素瘤专家,对每份提交内容的来源不知情,对所有答案集进行评分。进行了带有比较的Kruskal-Wallis检验,以评估总体和特定领域表现的组间差异。

结果

在总共80套答案(50套来自肿瘤学家,30套来自人工智能)中,Open ai o1 pro获得了最高的平均总分(98.0±1.9),其次是肿瘤学家(91.5±3.2)、Grok 3(82.3±2.1)和Gemini 2.0(74.2±3.4)。在所有领域都出现了统计学上的显著差异,人类专家在治疗选择方面表现尤为出色,但总体上仍落后于Open ai o1 pro。与肿瘤学家相比,人工智能模型的完成时间明显更短。

结论

这些发现表明,先进的生成式人工智能在葡萄膜黑色素瘤放疗决策的某些方面可以超越专家水平的表现。尽管人工智能可以加快临床工作流程并提供高度准确的指导,但对于细致入微的患者护理,人类判断仍然不可或缺。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12392105/65b491537791/fonc-15-1605916-g001.jpg

相似文献

6
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
10
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.

本文引用的文献

2
Using large language models as decision support tools in emergency ophthalmology.
Int J Med Inform. 2025 Jul;199:105886. doi: 10.1016/j.ijmedinf.2025.105886. Epub 2025 Mar 22.
3
How we treat patients with metastatic uveal melanoma.
ESMO Open. 2025 Apr;10(4):104496. doi: 10.1016/j.esmoop.2025.104496. Epub 2025 Mar 19.
5
Efficacy and safety of robotic Cyberknife radiotherapy in uveal melanoma: a systematic review and meta-analysis.
Eye (Lond). 2025 Feb;39(3):548-555. doi: 10.1038/s41433-024-03582-4. Epub 2025 Jan 11.
6
Expert Opinions on Uveal Melanoma: Insights from the 58th Ophthalmic Oncology Group Meeting.
Ocul Oncol Pathol. 2024 Dec;10(4):197-205. doi: 10.1159/000541016. Epub 2024 Aug 27.
8
External Beam Radiotherapy in the Management of Uveal Melanoma.
Curr Treat Options Oncol. 2024 Jul;25(7):932-951. doi: 10.1007/s11864-024-01212-5. Epub 2024 Jun 13.
9
Deciphering the dual roles of PHD finger proteins from oncogenic drivers to tumor suppressors.
Front Cell Dev Biol. 2024 May 15;12:1403396. doi: 10.3389/fcell.2024.1403396. eCollection 2024.
10
Uveal melanoma: Current evidence on prognosis, treatment and potential developments.
Asia Pac J Ophthalmol (Phila). 2024 Mar-Apr;13(2):100060. doi: 10.1016/j.apjo.2024.100060. Epub 2024 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验