Suppr超能文献

在临床环境中使用超声成像对基于深度学习的人工智能系统进行HER2靶向乳腺癌评估的验证。

Validation of a deep learning-based AI system for HER2-targeted breast cancer assessment using ultrasound imaging in a clinical setting.

作者信息

Malherbe Kathryn

机构信息

MedSol AI Solutions, University of Pretoria, Pretoria, South Africa.

出版信息

Front Oncol. 2025 Aug 14;15:1639474. doi: 10.3389/fonc.2025.1639474. eCollection 2025.

Abstract

BACKGROUND

This study evaluates the performance of a deep learning-based artificial intelligence (AI) system developed under the Stradexa (a branded form of doxorubicin used regionally in South Africa) initiative, designed for real-time risk stratification and treatment monitoring in HER2-positive breast cancer. Conducted in a routine clinical setting, the system's predictive capacity was assessed by comparing AI-generated risk scores derived from B-mode ultrasound with histopathology, immunohistochemistry, and treatment response in patients undergoing trastuzumab or doxorubicin therapy. The AI tool demonstrated favorable diagnostic accuracy and a meaningful correlation between risk score reduction and tumor response during therapy, particularly in the trastuzumab group. These findings support the integration of AI-assisted ultrasound for personalized oncology management.

OBJECTIVES

This study aims to evaluate the effectiveness of Herceptin (trastuzumab) compared to Stradexa (a branded form of doxorubicin used regionally in South Africa) (doxorubicin) in reducing Breast AI-predicted malignancy risk percentages and to assess the feasibility of using a deep learning-based AI system for monitoring treatment response in breast cancer.

METHODS

A total of 86 patients were selected from a larger cohort of 150, based on inclusion criteria of histologically confirmed breast cancer, availability of baseline and follow-up ultrasound scans, and ongoing chemotherapy with either transtumazub or doxorubicin. Patients with incomplete imaging, prior treatment, or other malignancies were excluded. The sample size of 86 provided borderline statistical power (~0.74) to detect moderate effect sizes between treatment groups, considering an alpha of 0.05. B-mode ultrasound images were analyzed using a convolutional neural network-driven Breast AI platform to generate malignancy risk percentages before and during treatment. Statistical analysis was performed to evaluate within-group and between-group changes in AI scores using appropriate inferential methods. All results, interpretations, and manuscript content were produced entirely by human researchers without the use of generative AI tools.

CONCLUSION

These findings highlight the potential of AI-based imaging tools to support real-time treatment monitoring in breast cancer. The observed trend favoring Herceptin suggests that AI-generated risk scores may serve as non-invasive indicators of treatment efficacy. Broader validation across larger, more diverse cohorts is warranted to confirm these preliminary results and further develop AI-guided oncology workflows.

摘要

背景

本研究评估了在Stradexa(一种在南非局部使用的阿霉素品牌形式)计划下开发的基于深度学习的人工智能(AI)系统的性能,该系统旨在对HER2阳性乳腺癌进行实时风险分层和治疗监测。在常规临床环境中进行,通过比较从B超超声得出的人工智能生成的风险评分与接受曲妥珠单抗或阿霉素治疗患者的组织病理学、免疫组织化学和治疗反应,评估了该系统的预测能力。该人工智能工具显示出良好的诊断准确性,并且在治疗期间风险评分降低与肿瘤反应之间存在有意义的相关性,尤其是在曲妥珠单抗组中。这些发现支持将人工智能辅助超声用于个性化肿瘤管理。

目的

本研究旨在评估赫赛汀(曲妥珠单抗)与Stradexa(一种在南非局部使用的阿霉素品牌形式)(阿霉素)相比在降低乳腺癌人工智能预测的恶性风险百分比方面的有效性,并评估使用基于深度学习的人工智能系统监测乳腺癌治疗反应的可行性。

方法

基于组织学确诊的乳腺癌、基线和随访超声扫描的可用性以及正在使用曲妥珠单抗或阿霉素进行化疗的纳入标准,从150名更大的队列中总共选择了86名患者。排除了成像不完整、既往接受过治疗或患有其他恶性肿瘤的患者。考虑到α为0.05,86名患者的样本量提供了检测治疗组之间中等效应大小的临界统计功效(约0.74)。使用卷积神经网络驱动的乳腺癌人工智能平台分析B超超声图像,以生成治疗前和治疗期间的恶性风险百分比。使用适当的推理方法进行统计分析,以评估人工智能评分在组内和组间的变化。所有结果、解释和手稿内容均完全由人类研究人员生成,未使用生成式人工智能工具。

结论

这些发现突出了基于人工智能的成像工具在支持乳腺癌实时治疗监测方面的潜力。观察到的有利于赫赛汀的趋势表明,人工智能生成的风险评分可能作为治疗效果的非侵入性指标。有必要在更大、更多样化的队列中进行更广泛的验证,以确认这些初步结果并进一步开发人工智能指导的肿瘤学工作流程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验