Zheng Linlin, Shi Nannan, Li Peizhao, Ge HongFei, Tu Chuantao, Qu Ying, Wang Yin, Lin Yuanyuan, Chen Shiyao, Sun Dalong, Weng Chengzhao, Wu Shengdi, Jiang Wei
Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.
Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China.
EClinicalMedicine. 2025 Aug 20;87:103436. doi: 10.1016/j.eclinm.2025.103436. eCollection 2025 Sep.
Rebleeding after initial endoscopic therapy is associated with high mortality in patients with hepatitis B virus (HBV)-related liver cirrhosis complicated by esophagogastric variceal bleeding (EGVB), imposing a substantial public health burden. Spontaneous portosystemic shunts (SPSS), a compensatory mechanism for portal hypertension, are closely associated with disease progression. This study aimed to develop and validate machine learning (ML) models incorporating clinical and imaging features to predict the risk and frequency of rebleeding following initial endoscopic treatment.
This multicenter prospective study enrolled patients with HBV-related cirrhosis and EGVB treated at Zhongshan Hospital, Fudan University (the development cohort). External validation was completed in five tertiary centers in China. The trial was registered at ClinicalTrials.gov, NCT03277651. Data were collected between January 2017 and January 2022. Five classic ML algorithms, Hierarchical Gradient Boosting (HGB), Multilayer Perceptron (MLP), Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting with classification trees (XGB), were utilized to predict rebleeding. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and F1 score. Time-dependent ML was further applied, with predictive performance compared between conventional and time-dependent models using the concordance index (C-index). The optimal model was interpreted via Shapley Additive Explanations (SHAP) and externally validated. Additionally, key predictors were integrated into a Support Vector Regression (SVR) model to estimate rebleeding frequency.
Among 295 patients in the development cohort and 190 in the external cohort, rebleeding occurred in 77 and 68 patients with SPSS, respectively. The XGB model demonstrated the best discrimination (AUCs: 0.814 internal, 0.776 external), significantly outperforming the other models ( = 0.014, 0.008). Compared with the Model for End-stage Liver Disease (MELD) and Child-Pugh scores (AUCs: 0.557 and 0.590), the XGB model significantly improved rebleeding prediction ( 0.0001). SHAP analysis identified hemoglobin, portal vein thrombosis, superior mesenteric vein diameter, platelet count, minimum shunt diameter, and splenic vein diameter as the top predictors. The SVR model achieved robust performance in estimating rebleeding frequency, with mean squared error (MSE) and R values of 0.030 and 0.914 in the training set, 0.073 and 0.777 in the internal validation set, and 0.143 and 0.708 in the external validation set.
The ML-based model offers a noninvasive, accurate tool for individualized risk stratification and follow-up planning in patients with HBV-related cirrhosis and SPSS after initial endoscopic therapy.
The work was supported by National Natural Science Foundation of China (82370622); Fujian Provincial Medical Innovation Project (2022CXB020); and Xiamen Key Medical and Health Project (3502Z20234006).
在乙型肝炎病毒(HBV)相关肝硬化合并食管胃静脉曲张破裂出血(EGVB)的患者中,初始内镜治疗后再出血与高死亡率相关,给公共卫生带来了沉重负担。自发性门体分流(SPSS)作为门静脉高压的一种代偿机制,与疾病进展密切相关。本研究旨在开发并验证纳入临床和影像学特征的机器学习(ML)模型,以预测初始内镜治疗后再出血的风险和频率。
这项多中心前瞻性研究纳入了在复旦大学附属中山医院接受治疗的HBV相关肝硬化和EGVB患者(开发队列)。在中国的五个三级中心完成了外部验证。该试验已在ClinicalTrials.gov注册,注册号为NCT03277651。数据收集时间为2017年1月至2022年1月。使用五种经典的ML算法,即分层梯度提升(HGB)、多层感知器(MLP)、随机森林(RF)、支持向量机(SVM)和带分类树的极端梯度提升(XGB)来预测再出血。使用受试者操作特征曲线下面积(AUC)、准确性、敏感性、特异性和F1分数评估模型性能。进一步应用时间依赖型ML,使用一致性指数(C指数)比较传统模型和时间依赖型模型的预测性能。通过Shapley加性解释(SHAP)对最优模型进行解释并进行外部验证。此外,将关键预测因素整合到支持向量回归(SVR)模型中以估计再出血频率。
在开发队列的295例患者和外部队列的190例患者中,分别有77例和68例发生再出血的患者存在SPSS。XGB模型表现出最佳的区分能力(内部AUC:0.814,外部AUC:0.776),显著优于其他模型(P = 0.014,0.008)。与终末期肝病模型(MELD)和Child-Pugh评分(AUC分别为0.557和0.590)相比,XGB模型显著改善了再出血预测(P < 0.0001)。SHAP分析确定血红蛋白、门静脉血栓形成、肠系膜上静脉直径、血小板计数、最小分流直径和脾静脉直径为主要预测因素。SVR模型在估计再出血频率方面表现出稳健的性能,训练集的均方误差(MSE)和R值分别为0.030和0.914,内部验证集为0.073和0.777,外部验证集为0.143和0.708。
基于ML的模型为初始内镜治疗后HBV相关肝硬化和SPSS患者的个体化风险分层和随访计划提供了一种非侵入性、准确的工具。
本研究得到了中国国家自然科学基金(82370622)、福建省医学创新项目(2022CXB020)和厦门市重点医疗卫生项目(3502Z20234006)的支持。