Suppr超能文献

一种用于肝移植患者围手术期神经认知障碍的监督式可解释机器学习模型及在重症监护医学信息数据库IV上的外部验证:一项回顾性研究

A Supervised Explainable Machine Learning Model for Perioperative Neurocognitive Disorder in Liver-Transplantation Patients and External Validation on the Medical Information Mart for Intensive Care IV Database: Retrospective Study.

作者信息

Ding Zhendong, Zhang Linan, Zhang Yihan, Yang Jing, Luo Yuheng, Ge Mian, Yao Weifeng, Hei Ziqing, Chen Chaojin

机构信息

Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.

Guangzhou AI & Data Cloud Technology Co., LTD, Guangzhou, China.

出版信息

J Med Internet Res. 2025 Jan 15;27:e55046. doi: 10.2196/55046.

Abstract

BACKGROUND

Patients undergoing liver transplantation (LT) are at risk of perioperative neurocognitive dysfunction (PND), which significantly affects the patients' prognosis.

OBJECTIVE

This study used machine learning (ML) algorithms with an aim to extract critical predictors and develop an ML model to predict PND among LT recipients.

METHODS

In this retrospective study, data from 958 patients who underwent LT between January 2015 and January 2020 were extracted from the Third Affiliated Hospital of Sun Yat-sen University. Six ML algorithms were used to predict post-LT PND, and model performance was evaluated using area under the receiver operating curve (AUC), accuracy, sensitivity, specificity, and F-scores. The best-performing model was additionally validated using a temporal external dataset including 309 LT cases from February 2020 to August 2022, and an independent external dataset extracted from the Medical Information Mart for Intensive Care Ⅳ (MIMIC-Ⅳ) database including 325 patients.

RESULTS

In the development cohort, 201 out of 751 (33.5%) patients were diagnosed with PND. The logistic regression model achieved the highest AUC (0.799) in the internal validation set, with comparable AUC in the temporal external (0.826) and MIMIC-Ⅳ validation sets (0.72). The top 3 features contributing to post-LT PND diagnosis were the preoperative overt hepatic encephalopathy, platelet level, and postoperative sequential organ failure assessment score, as revealed by the Shapley additive explanations method.

CONCLUSIONS

A real-time logistic regression model-based online predictor of post-LT PND was developed, providing a highly interoperable tool for use across medical institutions to support early risk stratification and decision making for the LT recipients.

摘要

背景

接受肝移植(LT)的患者存在围手术期神经认知功能障碍(PND)的风险,这会显著影响患者的预后。

目的

本研究使用机器学习(ML)算法,旨在提取关键预测因素并开发一个ML模型来预测LT受者中的PND。

方法

在这项回顾性研究中,从中山大学附属第三医院提取了2015年1月至2020年1月期间接受LT的958例患者的数据。使用六种ML算法预测LT术后PND,并使用受试者工作特征曲线下面积(AUC)、准确性、敏感性、特异性和F分数评估模型性能。使用一个包括2020年2月至2022年8月的309例LT病例的时间外部数据集和一个从重症监护医学信息库Ⅳ(MIMIC-Ⅳ)数据库中提取的包括325例患者的独立外部数据集对表现最佳的模型进行了额外验证。

结果

在开发队列中,751例患者中有201例(33.5%)被诊断为PND。逻辑回归模型在内部验证集中达到了最高的AUC(0.799),在时间外部验证集(0.826)和MIMIC-Ⅳ验证集(0.72)中的AUC相当。Shapley加性解释方法显示,对LT术后PND诊断贡献最大的前三个特征是术前显性肝性脑病、血小板水平和术后序贯器官衰竭评估评分。

结论

开发了一种基于实时逻辑回归模型的LT术后PND在线预测器,为跨医疗机构使用提供了一个高度可互操作的工具,以支持LT受者的早期风险分层和决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1092/11780294/c6f9f9ccdd31/jmir_v27i1e55046_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验